
Frauenberger et al. IAEM-iARS

INTERNET ARCHIVE FOR ELECTRONIC MUSIC
IAEM-iARS (INTERNET AUDIO RENDERING SYSTEM)

CHRISTOPHER FRAUENBERGER
�
, WINFRIED RITSCH

�
, ROBERT HÖLDRICH

�

Institute of Electronic Music and Acoustics, University of Music and Dramatic Arts Graz, Austria�
frauenberger@iem.at�

ritsch@iem.at�
hoeldrich@iem.at

The Internet Archive for Electronic Music (IAEM) is intended to be a platform to access an extensive and distributed
archive of electronic music. It combines collaborative tools, real time signal processing on the client side and the content
of the archive to a powerful teaching, research and publishing tool. The internet Audio Rendering System (iARS) refers
to the client browser extension which is part of the IAEM system. It extends a web-browser with a flexible real time audio
processing capability. iARS also supports multi-channel processing making multi-track recordings perceiveable in their
correct acoustical context.

INTRODUCTION

The IAEM project1 is intended to present an extensive
amount of digitised music following a new approach. It
extends the capabilities of an ordinary electronic library
with a collaboration platform and a audio rendering ma-
chine in order to make it a Internet based multi-media
information source for students, lectures and other re-
searchers.
There are many fields of applications possible for the sys-
tem proposed. Because of the flexible design of the au-
dio rendering machine it is possible to introduce real-
time signal processing with user-defined algorithms to
web based applications. Through the multi-channel stream-
ing capability multi-track recordings can be received in
their correct historical and acoustical context. This pre-
distines the system to be used in teaching and research.
The distributed architecture of the content databases al-
lows the integration of electronic archives from differ-
ent attending institution. The partners share the common
IAEM portal to access the data, but the databases are lo-
cated at the institutions. This is a very scalable approach
because the effort to migrate and to maintain the data is
not centralised at the operator of the IAEM portal. It also
splits the efforts for hardware and bandwidth between the
partners.
The IAEM system is also intended to be a publishing plat-
form for the users. It allows to publish music pieces as
well as algorithms for the audio rendering. It is hoped
that the system will serve as a vital platform for many
people contributing to the content.
Offering music for listening in the Internet must consider
legal issues to guarantee the legal certainty. The operator
of each content database is responsible for the content

1Home: http://iaem.at

he provides. He must be authorised for digital copying
the source and publishing it for a certain user group. The
restrictive authentication mechanism in the IAEM system
allows to set up different access rights for various user
groups.

1. THE ARCHITECTURE

The architecture of the IAEM system is a classical server-
client approach with distributed databases as back-end
data source. But there is a significant difference: clients
may also connect to the content databases directly. Figure
1 illustrates the approach.

Content
Databases

Browser + iARS plugin

direct Audio streaming (mp3,ogg/vorbis)

IAEM Portal

Clients

Figure 1: Basic structure of the IAEM including client
terminals

The core is the IAEM portal server which provides all
collaboration tools and a content management system.
This portal may connect to a list of content databases
where the music pieces are stored along with some addi-
tional meta-data like information about the composer, the
performing orchestra etc. The portal can process search-
queries on the data in order to offer it to the user via

AES 24
���

International Conference on Multichannel Audio 1



Frauenberger et al. IAEM-iARS

the web interface. The user can browse through the in-
formation, attend to discussions or select a music piece
and a audio rendering algorithm for listening. If the user
decided to receive a piece of music, the iARS browser
plugin is started at the client. It loads the chosen algo-
rithm and connects to the content database to receive the
requested music piece as an audio stream. The plugin
also provides a graphical user interface in the browser
window. The GUI contains controls with which the be-
haviour of the audio rendering algorithm may be altered
during operation.
The direct connection between the client and the con-
tent database decreases the hardware requirements for the
IAEM portal. If every stream connection would be routed
via the portal, the available bandwidth would restrict the
number of connections.

1.1. System requirements

Due to the distributed architecture illustrated above the
requirements for the single components of the system are
not very high. The content databases need to have suffi-
cient storage space for the archive intended to hold. The
Internet connection needed depends on how many users
are expected (and authorised) to request music pieces from
the database. However, a 100Mbit/sec (T1) connection
usually available at institutions willing to share their
archive is enough to serve a reasonable number of clients
(theoretically up to 800 for 128kbps streams).
The portal runs a content management system including
a database back-end. For this component too the require-
ments are not very high. A customary server provides
usually sufficient performance. The prototype built at
the IEM Graz is running a 2MHz Pentium XEON with
a 4.6GB RAID system.
The iARS plugin is based on the Pure Data programme
and requires a running installation on the clients PC. For-
tunately Pure Data supports a wide range of platforms
like Windows or Linux. iARS is written for Browsers
supporting the Netscape Gecko Plugin API [1] (Netscape
4.7, 6x, 7x, Mozilla 1x).

2. THE CONTENT DATABASES

A IAEM content database system consists of four main
components. The database itself is storing references to
the audio data in the file-system and the additional meta-
data. This database can be queried by the IAEM portal
through a standard SQL interface. The control block is
also communicating with the IAEM portal. It is respon-
sible for carrying out commands received by the portal
via a XML-RPC interface [2]. With these commands the
portal can initialise a stream, start or pause it and remove
the streaming mountpoint. It also controls the security
layer which is by now only a future concept. It should
strengthen the security and peer authenticity by certifi-

cates and SSL tunnel transmission. Figure 2 shows the
structure of a IAEM content database system.

Security Layer

Streaming Server

Client

C
on

tr
ol

 B
lo

ck

Portal

XML−RPC

Content Database

Digitised Music + Meta DataSQL Querys

Portal

Figure 2: Structure of a content database system

The migration of audio data into the system is under the
responsibility of the operator and/or the partner institu-
tion. The IAEM system provides a good reason to digitise
old music pieces and to migrate even multi-track record-
ings. The multi-channel and audio rendering capabilities
of the system make a realistic reproduction of such pieces
possible.

2.1. Streaming

In order to provide multi-channel capabilities the IAEM
content database system needs to employ a streaming
server technology which supports multi-channel audio for-
mats. Ogg vorbis is a new compressing audio data format
for encoding mid to high quality audio at variable bitrates
from 16 to 128 kbps/channel. Since version 1.0 rc1 this
standard also provides channel coupling mechanisms de-
signed to reduce effective bitrate by both eliminating in-
terchannel redundancy and eliminating stereo image in-
formation labelled inaudible or undesirable according to
spatial psychoacoustic models.
For supporting both the newer ogg vorbis format and mp3
the chosen streaming server is IceCast 2. It is fully con-
trolled by the control block and sets up mountpoints with
specific names. These mountpoint names are random
strings generated by the portal and sent to both, the stream-
ing server and the iARS client. This provides additional
security because only the one client who requested the
streaming is aware of the name of the mountpoint.

2.2. Database

Along with references to the audio data the content
database contains meta-data related to the music pieces.
The design is based on a relational database structure and
is similar to commonly used library systems, but sim-
plified to suit our requirements. The interface for portal
queries is a standard SQL command set.
Meta-data include references to a composer database,
lyrics, scores and other analysing remarks. However, there
are still investigations on how to connect the data in the
content database with collaboration data from the portal.

AES 24
���

International Conference on Multichannel Audio 2



Frauenberger et al. IAEM-iARS

E.g. discussion forums and mailing-lists for certain com-
posers or music pieces should have relation information
to pieces in the database than just by the forums name.

2.3. Controlling

The control block is a simple state machine receiving
commands from the portal and controlling the stream-
ing server and the security layer. Implementations of
XML-RPC are available for the most common program-
ming languages. The standard also proposes introspec-
tion methods and multicalls. The following set of meth-
ods is available from the control block XML-RPC server:

stream.init Initialising a stream for the speci-
fied id, setting up the mountpoint

stream.start Start streaming the audio data
stream.pause Pause the streaming
stream.remove Remove the mountpoint
secure.setkey Provide a key for the encryption

(future implementations)

3. THE IAEM PORTAL

The IAEM portal is a content management system with
various collaboration tools and additional features to drive
the iARS plugin and to query the content database sys-
tems. The chosen framework is Zope extended with CMF
and Plone.
The data presented by the portal is legally sensitive so that
a secure authentication method is compulsory. The Zope
system provides a LDAP authentication product with
which the user must log in before the portal can be used.
This allows also a personalised environment with user de-
fined folders and content. The rights can be set for ev-
ery single user so that the access to music pieces can be
clearly determined to prevent any legal conflicts.
The following collaboration tools are included:

� Mailing lists

� Calendar

� Discussion forums

� Collectors

� News

For publishing the portal also provides uploading to a
content database. The access rights for user published
data can be set by the author via the portal. For searching
the content databases a single line search is implemented
as well as a more complex advanced searching facility.

4. THE iARS BROWSER EXTENSION

iARS (internet Audio Rendering System) is a browser
plugin extending the browser’s capabilities with a flexible

audio rendering machine. It can be invoked by an “ob-
ject” tag within web pages. The signal processing is done
by the Pure Data programme which is launched by the
plugin and remote controlled via a XML-RPC interface.
The algorithm processed can be defined as a regular Pd
patch along with a graphical representation of the patch.
This is done using a IDL (interface description language)
introduced in section 4.3. According to this description
the plugin draws controls into the browser window with
which the behaviour of the algorithm can be altered. Fig-
ure 3 provides a deployment diagram containing all major
components of the iARS plugin.

Figure 3: Deployment diagram for the iARS browser plu-
gin

iARS implements the Netscape Gecko Plugin API to com-
municate with the browser. During the initialisation pro-
cess the plugin checks for running instances of Pd and
launches an instance if needed. The plugin control block
is remote controlling the Pd programme and builds the
graphical representation of the patch loaded. The Pd pro-
gramme is launched with externals which extend the ca-
pabilities of Pd for XML-RPC communication and audio
streaming. The GEM library might be used to draw real
time computer graphics to an assigned window area using
openGL.

4.1. Operation

The plugin is launched by using the “object” tag embed-
ded in regular HTML code. A MIME type is registered
by the plugin at the browser which refers to the the data
type associated. The following listing shows an example
HTML code for embedding iARS objects.

AES 24
���

International Conference on Multichannel Audio 3



Frauenberger et al. IAEM-iARS

Listing 1: Embedded object tag
�

html �
...
�

body �
�

OBJECT type=”application/pd”
data=”http :// contentdb . at :8888/NHSI271KJK8/” �
�

param name=”patchsource”
value=”http :// iaem.at / patches /amb.pd” �

�
param name=”gui”

value=”http :// iaem.at / patches /ambgui.xml”” �
�

/OBJECT �
...
�

/body � �
/html �

The object’s application/pd MIME type causes the browser
to launch iARS. A window handle provided by the browser
is assigned to the plugin for its graphical representation.
The “data” field determines the URI of the requested au-
dio data including the mountpoint. Parameters are “patch-
source” and “gui” both in a URI format. They assign the
Pd patch to be loaded and its graphical representation.

4.2. Pure data

Pure Data is a real time signal processing tool for custom-
ary PCs [3]. There are many extension libraries available
for Pd extending its capabilities. The two main exten-
sions developed for the IAEM project are the XML-RPC
interface and the improved ogg vorbis streaming exter-
nal. The main advantage of using Pd as the processing
core application is that there already exist many patches.
The generic approach of the plugin allows to reuse these
patches only with minor adjustments.
The XML-RPC interface to the Pd programme is intended
to become a comfortable standard of remote controlling
the application. It is possible to load and close patches,
but also to communicate with every single element of a
patch. There are mechanisms to bind callback functions
to symbols so that a event triggered communication de-
sired for GUIs is possible.

4.3. Graphical representation

The graphical representation of a patch is not defined
within the patch. This allows the reuse of existing patches
and the definition of a interface description language (IDL)
more suitable for our application than the existing. The
implementation of the controls was made using Troll-
tech’s Qt toolkit.
Within the IDL file several controls are defined which are
bound to elements of the Pd patch. If either the user inter-
acts by changing the value in the GUI or the patch alters
the value the counterpart is informed. So, parameters of
the patch can be altered and values can be displayed cor-
rectly. The following listing shows an example of a IDL
file describing a graphical representation of a Pd patch.

Listing 2: XML IDL example
�

?xml version=”1.0”? �
�

!DOCTYPE interface SYSTEM ”idl.dtd” �

�
interface �

�
author � Christopher Frauenberger

�
/author �

�
patch � Ambisonic 3D

�
/patch �

�
version � 1.0

�
/version �

�
button �
�

onoff bind=”switchalg”
value=”0” � Switch algorithm

�
/onoff �

�
trigger bind=”bang” � Start turning

�
/ trigger �

�
/button �

�
numeric �
�

hslider bind=”volume” � Volume
�

/hslider �
�

texfield bind=”angle” min=”0”
max=”360” value=”0” � Angle

�
/texfiled �

�
/numeric �

�
/ interface �

All possible tags and their relations are described in the
document type definition “idl.dtd”.

5. CONCLUSION

The proposed system combines very recent technologies
to a powerful research and lecturing tool. All compo-
nents were designed to be flexible and generic. The dis-
tributed architecture allows different partners to collabo-
rate for providing their clients a comprehensive library of
electronic music.
The iARS plugin is an approach to introduce real-time
audio rendering to the world of web applications. The
underlying Pd programme was chosen because of its per-
formance and availability for a wide range of platforms.
Future work will definitely need to proof the concept by
usability tests. The portal and its components will be re-
designed on the basis of the results of such studies.

6. ACKNOWLEDGEMENTS

This project was kindly funded by the Austrian Federal
Ministry for Education, Science and Culture within the
“New Media in teaching at universities and polytechnics
in Austria” project framework.

REFERENCES

[1] Netscape. Netscape Geck Plug-in API, 2002.
http://devedge.netscape.com/.

[2] D. Winer. Xml-rpc specification. Tech-
nical report, Userland, xml-rpc.com, 1999.
http://www.xmlrpc.com.

[3] Miller Puckette. Pd Documentation, 2003.
http://crca.ucsd.edu/˜msp/.

AES 24
���

International Conference on Multichannel Audio 4


