

IEM Report 32/06:
3LD – Library for Loudspeaker Layout Design

A Matlab Library for Rendering and Evaluating Periphonic

Loudspeaker Layouts.

Verfasser:
Florian Hollerweger

Kooperationspartner:
Center for Research in Electronic Art Technology,

University of California at Santa Barbara

1.3.2006

IEM - INSTITUT FÜR ELEKTRONISCHE MUSIK UND AKUSTIK
Vorstand: O.Univ.-Prof. Mag. DI Dr. Robert HÖLDRICH

 A-8010 Graz, Inffeldgasse 10/3, Tel.:+43/(0)316/389 – 3170, FAX:+43/(0)316/389 – 3171

office@iem.at http://iem.at/

3LD Library for Loudspeaker Layout Design

1

3LD – Library for Loudspeaker Layout Design

Abstract

The generation of loudspeaker layouts for periphonic sound spatialization systems is

a non-trivial task, just like the underlying mathematical problem: the homogeneous

distribution of a number of points on the surface of a sphere. According approaches

have a long tradition in mathematics (platonic solids, geodesic spheres) as well as in

physics (minimal energy configurations). However, neither of these fullfills all the

requirements of periphonic loudspeaker layouts, such as arbitrary choice of the

number of loudspeakers, possibility of psychoacoustical optimization (loudspeaker

density as a function of the ear's spatial resolution) and the consideration of practical

limitations (forbidden and explicitely demanded loudspeaker positions).

Through a hybrid approach of the strategies mentioned above, it is possible to

overcome the limitations of each single method and create a universal tool for the

design of three-dimensional loudspeaker layouts. The theoretical background for this

has been described in the author's diploma thesis [1]. This project was concerned

with the practical implementation of the developed theory and has resulted in the 3LD

Library for Loudspeaker Layout Design, which includes features for the generation,

visualization and evaluation of periphonic loudspeaker layouts.

1 Periphonic Loudspeaker Layouts

In [1], a detailed description of different criteria regarding the design of 3D

loudspeaker layouts has been given, which can be briefly summarized by stating that

the design of a periphonic (i.e. 3D) loudspeaker layout has to take into account

• The applied soundfield reconstruction algorithms, e.g. VBAP, Ambisonics, etc.

• The homogeneity of soundfield reconstruction

• The properties of human spatial hearing

• The loudspeaker distribution in the horizontal plane

• The architectural circumstances of a periphonic sound system

3LD Library for Loudspeaker Layout Design

In this chapter, we will evaluate different approaches of generating periphonic

loudspeaker layouts according to these criteria, starting with the Platonic solids,

which are optimal configurations regarding the homogeneity of soundfield

reproduction.

1.1 Platonic Solids

The five Platonic solids are the only convex polyhedra which are mathematically

regular. Figure 1 shows them in the following left-to-right order:

• Tetrahedron

• Hexahedron (Cube)

• Octahedron

• Icosahedron

• Dodecahderon

Figure 1: The five Platonic solids

In [2], a definition of regularity regarding Ambisonic soundfield reconstruction has

been given, yielding that all Platonic solids are regular in the Ambisonic sense for first

and the dodecahedron and icosahedron even for second order systems.

Unfortunately, the Platonic solids are not suitable for large-scale periphonic audio

reproduction systems, since they provide 20 vertices at the most. We will thus

consider the possibility of their geodesic extension in the next chapter.

2

3LD Library for Loudspeaker Layout Design

1.2 Geodesic Spheres

By tessellating the facets of a polyhedron and pushing the such created new vertices

out to the radius of the original configuration, geodesic spheres can be built from the

platonic solids or other polyhedra. An example of this iterative process is shown in

figure 2. The method of geodesic spheres has been generalized in [1] towards

maximum flexibility regarding the choice of the number of loudspeakers in a

configuration, resulting in a set of tessellation rules. By applying these rules

independently onto different facet shapes and different iterations of the process, we

achieve significant freedom in the design of periphonic loudspeaker layouts.

Figure 2: Construction process of a geodesic sphere

1.3 Minimal Energy Configurations

An approach from physics to the distribution of an arbitrary number of points on a

sphere are so-called minimal energy configurations, which are generated by a

random distribution of electrons on a spherical surface: Due to the repulsion forces

among the electrons, they will arrange themselves in a natural equilibrum of minimal

potential energy after some time. Note that the elctrons are only allowed to move on

the surface of a sphere. Figure 3 shows some snapshots of this iterative process,

which yields that the homogeneity of the configuration increases with the number of

iterations. The obvious advantage of arbitrary numbers of electrons/loudspeakers

has to be traded off for a lack of symmetry in the resulting layout.

Figure 3: Electrons distributing themselves towards a minimal energy configuration

3

3LD Library for Loudspeaker Layout Design

2 An Extended Loudspeaker Lay

In the author's master thesis [1], a new strategy for the

loudspeaker layouts has been pr

n of the design process into two stages,

tage: The spatial

solution of the human ear is best in the horizontal plane and for the front direction,

he combination of these considerations results in an extended loudspeaker layout

out Design Strategy

design of periphonic

esented, which is a hybrid approach of the methods

discussed so far. It bases on the separatio

the first of which is dedicated to the construction of a homogeneous loudspeaker

distribution, which is then psychoacoustically refined in the second s

re

whereas elevated and lateral sound sources can not be localized as well. By

providing higher loudspeaker densities in areas of better auditory resolution, we can

optimize a layout regarding the total number of loudspeakers. It has been suggested

in [1] to use the charges of the electrons in a minimal energy algorithm for the

implementation of spherical loudspeaker density functions: higher electron charges

result in higher repulsion forces among the electrons, and thus in lower loudspeaker

densities. A spherical loudspeaker density function can thus be derived as the

inverse of a function representing direction-dependent electron charges (which do

not exist in nature but are introduced here as a useful concept). However, a non-

constant electron density also means that we cannot choose the initial electron

distribution randomly any more, but rather have to use an initial configuration in

which the electrons are already to some degree homogeneously distributed over the

sphere. The Platonic solids or their geodesic extensions represent suitable intial

layouts for this hybrid approach, which can be further extended in order to account

for

• Non-spherical layout surfaces, i.e. a spherical radius function

• Gain and delay calibration due to differing loudspeaker distances

• Areas which do not allow for the mounting of loudspeakers

• Forced loudspeaker positions, i.e. 'locked' electrons

T

design strategy shown in figure 4

4

3LD Library for Loudspeaker Layout Design

Figure 4: Extended Loudspeaker Layout Design Strategy

5

3LD Library for Loudspeaker Layout Design

6

3 3LD – a Matlab Library for Periphonic Loudspeaker Layout
Design

 this chapter, we will present the functions included in the 3LD Library for

Loudspeaker y, their input

typi <functionname>" in the Matlab command line. At the beginning of

ach section, the presented function is denoted including all of its input and output

nctions, with a range of possible applications clearly exceeding the field of

eriphonic loudspeaker layout generation:

n+1,..,-1,0,1,..,n-1,n , where m is

e order and sig = ±1 the superscript of a spherical harmonic. Note that the terms

egree' and 'order' are sometimes used the other way around – for example, n

rder of an Ambisonic system. The functions are evaluated for each

In

Layout Design, including descriptions of their functionalit

and output arguments and example applications. These can also be retrieved by

ng "help

e

arguments. Optional input arguments are denoted in brackets. Note that the

cartesian and spherical coordinate system conventions used in all of the functions

follow the convention which is also used by native Matlab functions like sph2cart.

3.1 Core Functions

Two core functions have been implemented as useful extensions to native Matlab

fu

p

spharmonic
Y = spharmonic(n,az,elev[,norm]) computes the spherical harmonic

functions of degree n and m*sig = -n,-

th

'd

denotes the o

element of az and elev. n must be a scalar integer, and az and elev must be

arrays of identical size containing azimuth and elevation in radians. norm is an

optional argument, specifying different normalizations of the Legendre polynomials,

which are used in the calculation of the spherical harmonics. Legal strings are

'unnorm', 'sch' or 'norm'. The default value is 'unnorm'. spharmonic calls

Matlab's legendre with this argument – more information on the normalization

options can be found there.

3LD Library for Loudspeaker Layout Design

7

The returned array Y has one more dimension than az and elev. Each element

Y(m*sig+n+1,i,j,k,...) contains the spherical harmonic function of degree n,

order m, and superscript sig, evaluated at az(i,j,k,...), elev(i,j,k,...).

s:

 | sin(m*az) for sig=-1

= P(n,m;sin(elev))

 |_ cos(m*az) for sig=+1

e the solution for

n(elev)) is the Legendre polynomial of degree

 Matlab function

egendre.

For our spherical coordinate system, the spherical harmonic functions are given a

Y(n,m,sig;az,elev) =

 _

* <

For m=0, spharmonic only calculates the term for sig=+1, sinc

SIG=-1 is always zero. P(n,m;si

n and order m, calculated at sin(elev) by the means of the

l

Examples:

• spharmonic(2 , 0.0:0.1:0.2, 0.3:0.1:0.5) returns the matrix:

 .| az=0, el=0.3 az=0.1, el=0.4 az=0.2,el=0.5

--|--

997

m*sig = -1 | 0 -0.1074 -0.2508

Y(:,1,2,3) is the same as

spharmonic(n,az(1,2,3),elev(1,2,3)).

m*sig = -2 | 0 0.5056 0.8

m*sig = 0 | -0.3690 -0.2725 -0.1552

m*sig = 1 | -0.8470 -1.0707 -1.2370

m*sig = 2 | 2.7380 2.4943 2.1281

• az = rand(2,4,5); elev = rand(2,4,5); n = 2;

Y = spharmonic(n,az,elev);

so that size(Y) is 5x2x4x5 and

3LD Library for Loudspeaker Layout Design

8

e also:Se legendre.

spherical

ez
 = ezspherical(fct[,ngrid]) is an easy-to-use plotter for spherical

 a function handle with two arguments, the first of which is

terpreted as the azimuth, and the second one of which is interpreted as the

levation. ngrid specifies the resolution at which the plot is calculated: for both

ction value is calculated at every interval 2*pi/ngrid. ezspherical

h

functions. fct must be

in

e

angles, a fun

actually plots the absolute value of the radius in each direction. Positive and negative

function values can be distinguished by color (red for +1, blue for -1 in the default

case). Note that ezspherical uses Matlab's surf, so you can set the properties of

the returned graphic handle h as in surf.

Example:

• ezspherical can be used to plot spherical harmonic functions, created by

spharmonic (3LD). Use handlespharm (3LD) to create an according function

handle. For example, to plot the spherical harmonic function of degree 1, order 1,

and superscript -1, try
 = handlespharm('Y(1,-1)');

Se

 fct

 h = ezspherical(fct);

e also: handlespharm (3LD), solospharm (3LD), spharmonic (3LD), surf,

polar. ez

.2 Loudspeaker Layout Generation and Modification

ll 3LD loudspeaker layout generation functions except minenergyconf

turn a faces/vertices structure which can be directly plotted using Matlab's patch

r 3LD's plot3LD. Faces are always oriented counterclockwise as seen from the

3

Note that a

re

o

origin of a configuration.

3LD Library for Loudspeaker Layout Design

9

platonicsolid
p = platonicsolid(shape[,radius]) generates one of the five convex

regular polyhedra, which are also refered to as Platonic solids. Those are the

tetrahedron, the hexahedron (cube), the octahedron, the dodecahedron, and the

osahedron. shape is a string specifying which polyhedron to generate: Choices are

tetrahedron' (or 'tetra'), 'hexahedron' (or 'hex' or 'cube'),

' (or 'oct'), 'dodecahedron' (or 'dodec'), 'icosahedron' (or

elds vertices and faces. vertices is a V-by-3 matrix with rows

presenting the x,y,z coordinates of the V vertices, and faces is a F-by-S matrix

 triangular faces (S=3), the cube has

ctangular faces (S=4), and the dodecahedron has pentagonal faces (S=5). p can

ic

'

'octahedron

'ico').

radius refers to the radius of the Platonic solid, i.e. the distance of its vertices to the

center of the polyhedron, which is always located at the origin of the coordinate

system. If not specified, radius defaults to 1.

p has fi

re

with each row listing the row indices of the vertices forming one of the F faces of the

polyhedron. S refers to the number of vertices in a face of the polyhedron: The

tetrahedron, octahedron, and icosahedron have

re

be plotted directly using Matlab's patch or 3LD's plot3LD.

Example:

• Plot an icosahedron:
p = platonicsolid('ico');

plot3LD(p);

See also: geosphere (3LD), minenergyconf (3LD), sphere, ellipsoid,

patch.

bu
 = bucky2([radius]) generates the vertices/faces structure of a truncated

ncy matrix with a faces matrix. The output structure b has fields

cylinder,

cky2
b

icosahedron, also refered to as 'bucky ball'. This function uses Matlab's bucky, but

replaces its adjace

3LD Library for Loudspeaker Layout Design

vertices, which is a V-by-3 array specifying the x,y,z coordinates as returned by

ucky, and a F-by-6 faces array with rows containing the row indices of the vertices

 facet. Note that the Bucky ball consists of hexagons and pentagons. For

b

forming a

the rows in the faces matrix representing a pentagon, the last entry is NaN. The

output structure B can be plotted directly using Matlab's patch or 3LD's plot3LD.

See also: bucky.

geosphere
p = geosphere(shape[,freq,radius]) generates geodesic spheres from one

f the five platonic solids using 3LD's platonicsolid, or from any other

cture at its input. Geodesic spheres are constructed either by

dding a vertex in the middle of each facet in a polyhedron and connecting it to every

ther vertex in the facet (figure 5, left and right pictures), or by subdividing the edges

t and connecting the new vertices in a way that depends on the facet's

Figure 5: Different tessellations of various facet shapes [1]

sphere, or an existing polyhedron. 'tetrahedron' (or

'tetra'), 'hexahedron' or 'hex' 'octahedron' or 'oct',

'dodecahedron' or 'dodec', . In the latter case,

shape has to s is a V-by-

 matrix with rows representing the x,y,z coordinates of the V vertices, and faces is

a F-by-S matrix with each row listing the row indices of the vertices forming one of

o

vertices/faces stru

a

o

of each face

shape (figure 5, mid pictures). The first approach can be applied to arbitrarily shaped

facets, while the latter can only be applied to triangles or rectangles. Here, the

frequency f of the geodesic sphere determines into how many parts each edge is

subdivided.

shape can be a string specifying a platonic solid from which to build a geodesic

In the first case, choices are

 or 'cube',

'icosahedron' or 'ico'

 be a structure with fields vertices and faces. vertice

3

10

3LD Library for Loudspeaker Layout Design

11

the F faces of the polyhedron. S refers to the number of vertices in a face of the

polyhedron.

freq is a matrix which determines the frequencies applied in the tessellation and the

number of iterations. The j-th column refers to the j-th iteration. The i-th row refers to

the polygons with j minus 2 vertices, i.e. triangles for the first row, rectangles for the

second, pentagons for the third, and so on. For example, the element (4,3) of freq

specifies the frequency applied to any hexagon in our polyhedron in the third

iteration. Possible values for freq are:

e than 4 vertices can only be midpoint-

iangulated, elements >1 in the rows i>3 will be clipped to 1. If freq has less rows

r example, freq=[0; 3] means that all

all midpoint-triangulated, since that's our only

ption. If not specified, freq defaults to 2, i.e. triangles are triangulated at frequency

s respective direction. Note that in both cases, the radii of existing

ertices will be overwritten if shape is an existing polyhedron. If radius is empty or

• freq = 0 -> faces are not tessellated

• freq = 1 -> faces are midpoint-triangulated

• freq > 1 -> triangular faces are triangulated, and rectangular faces are

rectangulated at the frequency freq.

Note that since any faces with mor

tr

than there are different facet shapes in the polyhedron, the missing rows will be filled

up with the entries of the last available row. Fo

triangles will not be modified, all rectangles will be rectangulated at frequency 3, and

 faces with more than 4 vertices will be

o

2, rectangles rectangulated at frequency 2, and pentagons, etc. are midpoint-

triangulated.

radius refers to the radius of the geodesic sphere, i.e. the distance of its vertices to

the center of the sphere. It can be either a scalar or a handle to a function with two

arguments, the first of which is interpreted as azimuth, and the second one as

elevation. In the first case, all vertices are set to the same radius specified by the

scalar. In the second case, each vertex is set to the radius specified by the radius

function for it

v

not specified, the polyhedron will be tessellated, but the new vertices will not be

pushed out to a sphere or elsewhere.

3LD Library for Loudspeaker Layout Design

12

p is a structure with fields vertices and faces which provide the same properties

as required for the shape input argument. It can be plotted directly using 3LD's

plot3LD or Matlab's patch.

Examples:
• p = geosphere('oct',2,1); plot3LD(p);

• b = bucky2; p = geosphere(b,1,1); plot3LD(p);

p = geosphere('oct',[2 3]); plot3LD(p);

ee also:

•

• radius = @(az,elev) abs(cos(az) .* cos(elev)) + 2;

• p = geosphere('oct',[2 2 2],radius); plot3LD(p);

S platonicsolid (3LD), minenergyconf (3LD), sphere, ellipsoid,

 patch

) simulates

f a sphere until

ey reach what is refered to as a 'minimal energy configuration', i.e. a natural

n

rbitrary surface shapes, a spherical electron density function,

calable repulsion forces, and 'locked' electrons.

 can be a scalar, defining the number of electrons in a new configuration. In this

sitions of the e electrons will be randomly distributed. e can also be

r

ts to 1.

surface with

cylinder,

minenergyconf
v = minenergyconf(e[,n,radius,repulsion,density,lock]

the process of electrons distributing themselves over the surface o

th

equilibrum of minimal potential energy. In minenergyconf, this algorithm has bee

extended to allow for a

s

e

case, the initial po

an F-by-3 array, representing the x,y,z coordinates of an existing configuration with F

electrons, which is then used as the initial layout for further modification.

n represents the number of iterations applied. In each iteration, the repulsion forces

among all possible electron pairs are calculated, and the electrons are moved to thei

according new positions. If not specified, n defaul

radius determines the radius of the configuration. If radius is a scalar, the

electrons will be distributed on a sphere with that radius. However, radius can also

represent a handle to a spherical function, in which case it represents a

3LD Library for Loudspeaker Layout Design

13

a radius depending on azimuth (first argument) and elevation (second argument).

Both angels should be specified in radians. If not specified, radius defaults to 1.

repulsion specifies the power of the repulsion forces among the electrons. If not

 a

nction of direction (azimuth = first argument, elevation = second argument), in

 a

onstant density of 1 over the entire surface.

nsidered unlocked.

specified, repulsion defaults to 2, which represents the natural case of repulsion

forces between two electrons which are proportional to their inverse square distance.

If e.g. repulsion=1, the forces will be proportional to their plain inverse distance.

density is a handle to a spherical function representing the electron density as

fu

exactly the same way as RADIUS defines the radius as a spherical function. Higher

repulsion forces among the electrons will occur in areas of lower density and vice

versa. The repulsion forces among two electrons are then proportional to the product

of the inverse densities at their positions. If not specified, density defaults to

c

lock is a vector with a length matching the number of electrons in the configuration.

A non-zero entry means that the electron with the according row index in the output

array V will be 'locked', i.e. it will exercise repulsion forces on the other electrons, but

is immune to the forces exercised on itself and will thus remain in its initial position. If

not specified, all electrons remain unlocked, i.e. lock is a null vector. If lock is

undersized, the remaining electrons will be co

V is an e-by-3 matrix specifying the resulting x,y,z coordinates of the e electrons.

Example:

• A minimal energy configuration with 50 electrons and 20 ierations:
p.vertices = minenergyconf(50,20);

See also: platonicsolid (3LD), geosphere (3LD).

coord, which

rep ound either AXIS (specified by

rotate_xyz
v = rotate_xyz(coord,axis,angle) rotates the P-by-3 array

resents the x,y,z coordinates of P points, ar

3LD Library for Loudspeaker Layout Design

14

strings 'x', 'y', or 'z') by an angle given in radians. Arbitrary rotation axes can

.

xample:

be achieved by subsequent application of rotate_xyz

E

 octahedron 45 degrees around the x axis • Rotate an
p = platonicsolid('oct');

p.vertices = rotate_xyz(p.vertices,'x',pi/4);

See also: platonicsolid (3LD), geosphere (3LD), bucky2 (3LD),

inenergyconf (3LD).

ma
s hedron -

presented by the N-by-3 array V which contains their x,y,z coordinates - to a

e radius as a

rst argument of the function handle is interpreted as the

zimuth, and the second as the elevation. radius can also be a scalar, in which

ase the vertices are mapped to a sphere of that radius. If radius is not specified,

apped to the unit sphere of radius 1. The N-by-3 output array

m

p_to_surface
= map_to_surface(V[,radius]) maps the N vertices of a poly

re

surface defined by a function handle radius, which represents th

spherical function. The fi

a

c

the vertices are m

represents the new x,y,z coordinates of the vertices. Only the radius of the vertices

will be affected, whereas their direction is maintained.

Example:

• Create a geodesic sphere and map its vertices to a surface derived from a

spherical harmonic function, using 3LD functions. Plot the original polyhedron, the

radius function and the new polyhedron.
p = geosphere('ico',[2,2],1);

patch(p,'facecolor',[.1 .7 .3],'facealpha',0.8);

radius = handlespharm('abs(3*Y(7,-5))+1');

; ezspherical(radius,200);

Se

figure

p.vertices = map_to_surface(p.vertices,radius);

figure; patch(p,'facecolor',[.1 .7 .3],'facealpha',0.8);

e also: handlespharm (3LD), ezspherical (3LD), calibrate_layout (3LD).

3LD Library for Loudspeaker Layout Design

15

3.3

am
B calculates the

we The

3D encoding convention as specified in [1] is applied.

umber of Ambisonic channels N =

M+1)^2, which is the number of rows in the field gain of the output structure B.

ain specifies the gains of the virtual sound sources. It can be a scalar, in which

not

pecified, gain defaults to 1 for all sources.

sound sources are fed by the same

udio signal. If identical is not zero, this is assumed to be the case, while

 the rows in the output array. For

spharmonic' (or 'sph' or 's'), the order of rows matches the one of 3LD's

he output structure B has two fields. B.gain is an N-by-S matrix if identical=0

 Loudspeaker Driving Signal Generation

b3d_encoder
= amb3d_encoder(M,src[,gain,identical,sort])

ightings of the spherical harmonic components of a 3D Ambisonic soundfield.

N

M is the Ambisonic order and determines the n

(

src specifies the directions of the virtual sound sources. It is an S-by-2 array

representing azimuth and elevation in radians.

g

case it is applied to all sources, or an S-by-1 array, with different gain factors for each

source. Additional values will be ignored, and missing values will be set to 1. If

s

identical specifies whether the spatialized

a

independent sources are assumed if identical is 0. This affects the dimensions of

the output array B.gain. If not specified, identical defaults to 0.

sort is a string which affects the order of

'

spharmonic, while for 'ambisonic' (or 'amb' or 'a'), the Ambisonic channels

are sorted according to a convention used in [1]. If not specified, sort defaults to

'spharmonic'.

T

and an N-by-1 matrix if identical=1 and represents the weightings of the N

spherical harmonic components. In the latter case, all sound sources are fed by the

same signal and their weightings are superponed. B.sort is equivalent to the sort

3LD Library for Loudspeaker Layout Design

16

input argument. It is added to the output structure for later decoding with 3LD's

amb3d_decoder.

Example:

• Encode a front and a top source at third order
source_position = [0 0;0 pi/2];

source_gain = [1 0.5];

B = amb3d_encoder(3,source_position,source_gain)

See also: amb3d_decoder (3LD), amb3d_regularity (3LD), vbp (3LD),

ic (3LD).

am
g e loudspeaker

ains for an array of L speakers from the Ambisonic channel gains of a 3D encoded

, which typically represents the output of 3LD's amb3d_encoder, has to be a

tructure with fields gain, and sort. gain is an N-by-S array, with rows

 Ambisonic channels of S sound sources represented in the

pk specifies the directions of the loudspeakers. It must be an L-by-2 array,

f not specified, it is derived

om the encoded input material B. Otherwise, the order of the input material can only

spharmon

b3d_decoder
= amb3d_decoder(B,spk[,M,method,flavor]) derives th

g

soundfield.

B

s

representing the N

columns. sort determines the order in which the Ambisonic channels appear. Check

the documentation of amb3d_encoder for a description.

s

representing azimuth and elevation in radians. Note that amb3d_decoder calls

amb3d_encoder for re-encoding the loudspeaker layout. Thus, the N3D encoding

convention [2] is applied in this process

M is the Ambisonic order at which the decoder operates. I

fr

be overridden with smaller values.

3LD Library for Loudspeaker Layout Design

17

method specifies the decoding method. Legal strings are 'projection' (or

'proj') and 'pseudoinverse' (or 'pinv').

lavor specifies the decoder flavor. Legal strings are 'basic' and 'inphase'.

t virtual sound sources, which are represented in

e rows. Note that the function does by no means normalize the output gains. It is

f

g is an L-by-S matrix. Each column represents the loudspeaker gains required to

reproduce one of the S independen

th

your responsibility to avoid clipping.

Example:

• Decode the output of the example in the AMB3D_ENCODER documentation to an

lev],2,'pinv','inphase')

icosahedron loudspeaker layout at second Ambisonic order.
p = platonicsolid('ico');

[az elev] = cart3sph(p.vertices);

g = amb3d_decoder(B,[az e

See also: amb3d_encoder (3LD), amb3d_regularity (3LD), vbp (3LD),

am
[r turns a string

egularity, which specifies whether a 3D layout of L loudspeakers is 'regular',

mbisonic

 page 176 in [1]. It also returns the condition number condnum

f the re-encoding matrix C, which can be built from the loudspeaker position

formation and is also a regularity criterion according to [3]. The third output

atrix (C*C')/L, which is used to evaluate the regularity. The layout

spharmonic (3LD).

b3d_regularity
egularity, condnum, C] = amb3d_regularity(M,spk) re

r

'semiregular' or 'irregular' in the Ambisonic sense for a specific A

order M, as defined on

o

in

argument C is the m

is regular if this matrix is the unity matrix, and semi-regular if it is a diagonal matrix.

Note that slight variations have been allowed in order to account for numerical

inaccuracies. spk is an L-by-2 matrix containing the azimuths (first column) and

elevations (second column) of the L loudspeakers. Note that as usual, the N3D

encoding convention [1] is applied in evaluating the regularity and condition number

of the layout.

3LD Library for Loudspeaker Layout Design

18

Example:

• A dodecahedron is regular for second order Ambisonic
p = platonicsolid('dodec');

[az elev] = cart3sph(p.vertices);

amb3d_regularity(2,[az elev])

See also: amb3d_encoder (3LD), amb3d_decoder (3LD).

g = vbp(src,spk,group[,type,gain,identical]) calculates the gains of

an panned virtual sound sources. 2D or

3D

 2D VBP, it is an S-by-1

rray representing the azimuths, whereas for 3D VBAP VBAP, it is an S-by-2 array

presenting azimuths and elevations. All angles have to be specified in radians.

roup specifies pairs (2D VBP) or triples (3D VBP) of loudspeakers. and thus is an

ype is a string that specifies whether vector base amplitude panning [4] or vector

ot specified, this

rgument defaults to 'vbap'.

ain factors for each

ource are to be applied. Additional values will be ignored, and missing values will be

vbp

 array of L loudspeakers due to S vector-base

 VBP can be applied.

src specifies the directions of the virtual sound sources. For

a

re

spk specifies the directions of the loudspeakers. It can be an L-by-1 (2D VBP) or an

L-by-2 (3D VBP) array, and is interpreted in the same way as SRC.

g

R-by-2 or R-by-3 matrix, where R is the number of pairs/ triples. The entries of group

represent the row indices of the respective loudspeakers in spk.

t

base intensity panning [5] is applied. For the first case, the string should be 'vbap'

or 'a'. For the second case, 'vbip' or 'i' are legal. If n

a

gain specifies the gains of the virtual sound sources. It can be a scalar, in which

case it is applied to all sources, or an S-by-1 array, if different g

s

set to 1. If not specified, gain defaults to 1.

3LD Library for Loudspeaker Layout Design

19

identical specifies whether the spatialized sound sources are fed by the same

audio signal. If identical is not zero, this is assumed to be the case, while

dependent sources are assumed if identical is 0. This affects the dimensions of

 signal (i.e. identical=1) or an L-by-S

atrix if not (i.e. identical=0). In the latter case, the columns of g represent the

in

the output array G. If not specified, identical defaults to 0.

The output array g represents the gains of the loudspeakers. It is an L-by-1 matrix if

the sound sources are fed by the same audio

m

gain factors for the S independent sound sources. Note that the function does by no

means normalize the output gain factors. It is your responsibility to avoid clipping.

Example:

• Reproduce a front source on an octahedron loudspeaker layout

ee also:

source_position = [0 0];

p = platonicsolid('oct');

[az elev] = cart3sph(p.vertices);

g = vbp(source_position,[az elev],p.faces,'vbip')

S amb3d_encoder (3LD), amb3d_decoder (3LD), amb3d_regularity

ca
[g lculates the calibration gains g and

de L-by-3 array

presenting the x,y,z coordinates of the L loudspeakers in the array. The same

which defaults to 343.3 meters per second (air at 20°C and at sea level) if not

pecified.

gth L, representing the gain factors of all loudspeakers in the array

(3LD).

librate_layout
,d] = calibrate_layout(sppk[,c]) ca

lays d for an array of loudspeaker with varying radii. spk is a

re

cartesian coordinate system as in Matlab's SPH2CART is applied. c is the speed of

sound,

s

g is a vector of len

due to the 1/r law of sound pressure amplitude decay. The speaker with the greatest

radius will be assigned a gain factor of 1, whereas the gains of the closer speakers

will be attenuated to factors < 1.

3LD Library for Loudspeaker Layout Design

20

d is a vector of length L, representing the delay factors of all loudspeakers in the

array due to the finite speed of sound C in seconds. The speaker with the greatest

radius will be assigned a gain factor of 0.

xample:

Note that loudspeaker array calibration results in the virtual sound sources moving at

a distance which is equal to the maximum radius of a loudspeaker in the array, i.e.

the distance of the loudspeaker which the layout is normalized too.

E

p = platonicsolid('tetra');

• Create a platonic solid using a 3LD function and move one of its vertices to a

greater radius. Calculate the calibration gains and delays for loudspeakers

positioned at the vertices of the solid.

p.vertices(1,:) = [0.8, 0.8, 0.8];

p.vertices

[g,d] = calibrate_layout(p.vertices)

See also: map_to_surface (3LD).

3.4 tion

so
[p,v,VV,uV] = soundfielder(src,freq,type,X,Y,Z,time

..[,gain,sum,dir,T])

ure, velocity, velocity vector, and u velocity of

oundfields in air, created by S monochromatic sound sources with different radiation

haracteristics. The positions of the sources and sinks of the field can be arbitrarily

efined.

rc an S-by-3 array containing the x,y,z position information of the S sound sources.

 Soundfield Rendering and Evalua

undfielder

.

calculates the complex sound press

s

c

d

s

3LD Library for Loudspeaker Layout Design

21

freq is a scalar or a vector with lenght S, either refering to an identical frequency of

all monochromatic sound sources, or specifying the frequency of each source

independently.

type is a string which determines the radiation characteristics of the sound sources.

p'. If type is a single string, all sound sources will be of that type. If can also be a

 arrays specifying the x, y, and coordinates of the sinks, i.e. the

easuring points of the soundfield. Use the output of Matlab's meshgrid for these

e of

entical size, and an equal number of dimensions is used in the output arrays to

r of length S, representing time-constant gains for each source,

r an S-by-N array, where the element (i,j) represents the gain of the i-th sound

se of a wavefront.

Possible choices are 'spherical' or 'sph' or 's', and 'plane' or 'pl' or

'

cell array of S strings, specifying the type for each of the sources independently.

X, Y, and Z are

m

arrays, i.e. 3D arrays for cubic, 2D arrays for plane, or vectors for line sink definition.

soundfielder uses the number of dimensions for gradient evaluation of the output

vector fields, thus you have to follow the described scheme to get useful output for

the three output arguments v, VV, and uV. In all cases, the arrays have to b

id

represent them. The only exception is given when X and Y are vectors and Z is a

scalar, in which case soundfielder does the meshgriding itself such that all

combinations of x and y at constant height z are calculated, i.e. the soundfield on a

horizontal plane. Accordingly, two dimensions are used in the output arrays to

represent the sinks.

time is a vector of the points in time at which the soundfield is rendered, which have

to be specified in seconds.

gain determines the gain factors of the S sound sources. It can either be a scalar,

refering to identical gains for all sources at each point of time for which the field is

rendered, or a vecto

o

source at the j-th point in time. Note that gain can be complex, specifying the

amplitude as well as the pha

3LD Library for Loudspeaker Layout Design

22

sum is a scalar determining whether the soundfields created by the S sources are

superponed in the output arrays P and V, which is the case if sum is a non-negative

scalar.

dir specifies the direction of the wavefronts. Non-negative numbers refer to the

e same direction or not.

 is the complex sound pressure field. The first dimensions of p refer to the

hich the field is rendered. If sum~=0, an additional dimension refers to the fields of

are

on-singleton dimensions in X, Y, Z, i.e. three if the sink data is cubic, two if it is

incoming wavefront, while negative numbers specify an outgoing wavefront. dir can

either be a scalar or a vector of length S, depending on whether all S sound sources

share th

T is the time-invariant and homogeneous temperature at which the soundwaves

propagate. It is specified in Kelvin and defaults to 273.15 Kelvin (0°C) if not specified.

p

dimensions of X, Y, Z (unless those were specified as two vectors and a scalar -> see

X, Y, Z), followed by another dimension representing the various points of time for

w

the different sound sources. Thus, generally size(p) =

[size(X),lenght(time),size(src,1)]. However, any singleton dimension

will be removed, e.g. if you calculate the soundfields caused by three sources in a

cubic sink grid at a single point of time, size(p) = [size(X),3]. If you

additionally superpone the fields created by the sources, size(p) = size(X).

v is the complex sound velocity field as discussed in [6]. As in p, its first dimensions

refer to the dimensions of X, Y, Z. The first dimension after these represents the

vector components of the gradient field and thus has as many elements as there

n

plane, and one if it represents a line. The next dimension represents the elements in

time, and if sum~=0, another dimension refers to the velocity fields due to the

different sources of the field. Thus, generally size(V) =

[size(X),numNonSingletonSinkDims,length(TIME),size(SRC,1)], but

as in p, all singleton dimensions are removed, so if you calculate the superponed

field of S sources along a line of 10 points in space for 17 points in time, size(V) =

[10 17].

3LD Library for Loudspeaker Layout Design

23

VV is the complex velocity vector field, as defined in [7]. It is an array with the same

size and properties as v. Its real part is associated with the perception of direction in

 soundfield, and its imaginary part is often refered to in the literature as 'phasiness'.

ity', and is

ssociated with the perception of direction in a soundfield. Its imaginary part is

a

As in p, all singleton dimensions will be removed.

UV is the complex u velocity as defined in [6]. It is an array with the same size and

properties as V. Its real part is refered to in the literature as 'active veloc

a

refered to as 'reactive velocity' and does not relate to sound energy transport. As in

P, all singleton dimensions will be removed.

See also: pressure_errors (3LD), direction_deviation (3LD), gradient,

meshgrid.

direction_deviation
irdev = direction_deviation(refdir,synthdir) computes errors

mong the directions of two vector fields. refdir and synthdir are two arrays of

ng the vector fields which indicate the directions of a complex

s dimension will be missing in the output array

irection_deviation: since the direction deviation is specified as a scalar in

d

a

equal size, representi

reference pressure field and a synthesized field. Direction indicators are for example

the real part of the complex velocity or the real part of the u velocity as calculated by

3LD's soundfielder.

dim specifies the dimension which represents the x,y,and possibly z components of

the vector field. Thi

d

radians at each point of the field, the dimensions representing the vector field

components becomes singleton and is removed by the function.

See also: soundfielder (3LD), pressure_errors (3LD).

3LD Library for Loudspeaker Layout Design

24

pressure_errors
ressure_errors(ref,synth) computes errors among two

e2 is the 'squared sound pressure error', i.e. the squared difference of the two

ee also:

[pe2,ae] = p

complex sound pressure fields ref and synth, where the first represents the

original soundfield, and the latter represents the reconstructed soundfield. The size of

the input arrays is arbitrary, but has to match. The error is calculated as a scalar field

with the size of the two input fields.

p

fields. Note that it is complex. ae is the 'sound pressure amplitude error', which is the

absolute value of the difference of the two fields and is real.

S soundfielder (3LD), direction_deviation (3LD).

.5 Helper Functions

olospharm
pharm(n,mTimesSig,az,elev[,norm]) computes the spherical

entical size

olospharm calls spharmonic (3LD), which calls legendre with the norm

argument; more information on the normalization options can be found in legendre.

3

s
Y = solos

harmonic functions of degree n, order m, and superscript sig = ±1. The functions

are evaluated for each element of az and elev. n must be a scalar integer.

mTimesSig must be a vector with each element i fullfilling the condition

abs(mTimesSig(i)) <= n. az and elev must be arrays of id

containing, the azimuth and elevation arguments in radians. norm is an optional

argument, specifying different normalizations of the Legendre polynomials, which are

included in the spherical harmonics. Legal terms are 'unnorm','sch' or 'norm',

and default is 'unnorm'. Y returns the values of the spherical harmonic functions for

each element in the mTimesSig vector and each pair az, elev. The first dimension

of Y refers to the different spherical harmonic functions, whereas the other

dimensions refer to those of the input arrays az and elev. If mTimesSig is a scalar,

the first (singleton) dimension is removed, and Y has the same size as az and elev.

s

3LD Library for Loudspeaker Layout Design

25

spharmonic always returns the spherical harmonic functions of all orders and both

superscripts for the specified degree n, i.e. from mTimesSig = -n:n. To be able to

access single harmonic function of a certain order, solospharm has been

introduced. Note that it is inefficient, since solospharm simply throws away the

functions returned by spharmonic which have not been requested. However,

spharmonic uses the native Matlab function legendre, which does not return

functions of a single order either.

See also: spharmonic (3LD), legendre.

andlespharm
 = handlespharm(string) returns a handle to a combination of spherical

ns. string is a string defining this combination using terms

calls solospharm (3LD), which calls spharmonic (3LD), which

alls Matlab's legendre. Refer to those functions for more information.

h
h

harmonic functio

'Y(n,m*sig)', where n refers to the degree, m to the order, and sig = ±1 to the

superscript of the spherical harmonic function. Note that abs(m*sig) <= n. The

output of handlespharm can be plotted directly with ezspherical (3LD). Note that

handlespharm the spherical harmonics in handlespharm are always Schmidt-

seminormalized.

handlespharm

c

Examples:

• Plot the sum of the spherical harmonic of degree 3, order 2, and superscript +1,

bsolute value of the function of degree 7, order 1, and superscript -1:

•

'(Y(4,3)*Y(5,5)) / abs(Y(1,0)+2)');

h);

Se

and the a
h = handlespharm('Y(3,2) + abs(Y(7,-1))');

ezspherical(h);

Butterfly demo
h = handlespharm(

ezspherical(

e also: spharmonic (3LD), solospharm (3LD), ezspherical (3LD),

egendre. l

3LD Library for Loudspeaker Layout Design

26

cart3sph
az,elev,r] = cart3sph(xyz) This function is identical to Matlab's cart2sph,

a single N-by-3 matrix as an input argument, rather than three separate

[

but takes

arrays. The columns of xyz represent the x, y, and z components of N different

points. The function returns the az (azimuth), elev (elevation), and r (radius)

components as three vectors. This is convenient to evaluate the spherical

coordinates of a vertices array as returned by platonicsolid, geosphere, or

bucky2 (all 3LD) without prior separation into x,y,z vectors.

See also: sph3cart (3LD).

sph3cart
yz = sph3cart(az,elev,r). This function is identical to Matlab's sph2cart,

 a single N-by-3 matrix as an input argument, rather than three separate

x

but returns

arrays. The columns of xyz represent the x, y, and z components of the N different

points. The azimuth, elavtion and radius components have to be provided as three

independent input arguments. This function is convenient for converting the spherical

coordinates of a vertices array back to their cartesian representation after edits like

radius mapping.

See also: cart3sph (3LD).

eg2rad
ad = deg2rad(deg)

n arbitrary numeric input array deg from degrees to radians.

d
r

Convert a

See also: rad2deg (3LD).

rad2deg
eg = rad2deg(rad) d

3LD Library for Loudspeaker Layout Design

27

Convert an arbitrary numeric input array rad from radians to degrees.

See also: deg2rad (3LD).

plot3LD
 = plot3LD(thing[,lock]) is a straightforward-to-use plotter for vertices/faces

 representing loudspeaker layouts and spherical functions representing

ing is a structure with fields 'vertices' and

aces'. Additionally, you can specify the lock status of the speakers (used also in

tions, thing is a function handle depending on two

ariables, the first of which is interpreted as the azimuth and the second one of which

h

structures

radius or loudspeaker density functions.

In the case of loudspeaker layouts, th

'f

minenergyconf), which will be represented with the color of the loudspeaker index

in the plot: IDs of unlocked speakers are black, whereas locked loudspeaker indices

appear red. The plotting is done by Matlab's patch function. 3LD functions which

return a structure that can be directly plotted with plot3LD are platonicsolid,

bucky2, and geosphere.

For plotting spherical func

v

as the elevation. The plotting is done by 3LD's ezspherical. The output of 3LD's

handlespharm can be plotted directly using plot3LD.

See also: ezspherical (3LD), platonicsolid (3LD), bucky2 (3LD),

eosphere (3LD), patch.

.6 Demo Scripts

ipts are included in the 3LD distribution:

demo_minenergy

re

g

3

The following demo scr

• demo_density

•

• demo_geosphe

3LD Library for Loudspeaker Layout Design

28

• demo_soundfielder

l starting points for exploring the library.

and can serve as usefu

3LD Library for Loudspeaker Layout Design

29

References

[1] Florian Hollerweger. Periphonic Sound Spatialization in Multi-User Virtual

Environments. Master's thesis, University of Music and Dramatic Arts Graz, Austria,

2006

[2] Jérôme Daniel. Représentation de champs acoustiques, application à

la transmission et à la reproduction de scènes sonores complexes dans

un contexte multimédia. PhD thesis, Université Paris 6, 2000.

[3] Alois Sontacchi. Dreidimensionale Schallfeldreproduktion für Lautsprecher- und

Kopfhöreranwendungen. PhD thesis, Technische Universität Graz, Austria, 2003.

[4] Ville Pulkki. Virtual Sound Source Positioning Using Vector Base Amplitude

Panning. Journal of the Audio Engineering Society, Vol.45, No.6, June 1997, pp.

456-466

[5] Jean-Marie Pernaux, Patrick Boussard, Jean-Marc Jot: Virtual. Sound Source

Positioning and Mixing in 5.1. Implementation on the Real-Time System Genesis.

Proceedings DAFX98, Barcelona

[6] M. A. Poletti. A Unified Theory of Horizontal Holographic Sound Systems. Journal

of the Audio Engineering Society, Vol.48, No.12, December 2000, pp.1155-1182.

[7] J. Daniel. Acoustic Properties and Perceptive Implications of Stereophonic

Phenomena. Corrected version, 03/29/99. AES 16th International Conference on

Spatial Sound Reproduction, 1999.

	Periphonic Loudspeaker Layouts
	Platonic Solids
	Geodesic Spheres
	Minimal Energy Configurations

	An Extended Loudspeaker Layout Design Strategy
	3LD – a Matlab Library for Periphonic Loudspeaker Layout Des
	Core Functions
	spharmonic
	ezspherical

	Loudspeaker Layout Generation and Modification
	platonicsolid
	bucky2
	geosphere
	minenergyconf
	rotate_xyz
	map_to_surface

	Loudspeaker Driving Signal Generation
	amb3d_encoder
	amb3d_decoder
	amb3d_regularity
	vbp
	calibrate_layout

	Soundfield Rendering and Evaluation
	soundfielder
	direction_deviation
	pressure_errors

	Helper Functions
	solospharm
	handlespharm
	cart3sph
	sph3cart
	deg2rad
	rad2deg
	plot3LD

	Demo Scripts

