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ABSTRACT
Ambisonics synthesizes sound fields as a sum over angular (spherical/cylindrical harmonic) modes, resulting
in the definition of an isotropically smooth angular resolution. This means, virtual sources are synthesized
with outstanding smoothness across all angles of incidence, using discrete loudspeakers that uniformly cover
a spherical or cylindrical surface around the listening area. The classical Ambisonics approach models the
fields of these discrete loudspeakers in terms of a sampled continuum of plane-waves. More accurately,
the contemporary concept of Ambisonics uses a continuous angular distribution of point-sources at finite
distance instead, which is considerably easier to imagine. This also improves the accuracy of holophonic
sound field synthesis and the analytic description of the sweet spot. The sweet spot is a limited area of
faultless synthesis emerging from angular harmonics truncation. Additionally, playback with loudspeakers
causes spatial aliasing. In this sense, the contemporary concept allows for a succesive consideration of the
major shortcomings of Ambisonics: the limited sweet spot size and spatial aliasing. To elaborate on this, our
paper starts with the solution of the nonhomogeneous wave equation for a spherical point-source distribution,
and ends with a novel study on spatial aliasing in Ambisonics.

1. INTRODUCTION

Several spatial audio rendering techniques use dif-
ferent weights to distribute an acoustic source signal

to pairs or triples of loudspeakers of the multichannel
setup. Essentially, stereophony [1] and vector base
amplitude panning (VBAP, [2]) use this well-known
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(a) Continuous distribution (b) Angularly band-limited distr. (c) Discretized distribution

Fig. 1: Illustration of a continuous point-shaped distribution on the sphere (a) and its angularly band-limited
version (b). May a discretized distribution (c) physically correspond to sound pressure, radial sound particle
velocity, or source strength to model a spherical sound reproduction system?

psychoacoustic effect, commonly referred to as phan-
tom source [3]. Ambisonics in its simple form [4], as
known to many live electronics technicians and elec-
tronic music artists, also distributes a source signal
with different weights to loudspeakers, however with
non-zero weights for most speakers. In an abstract
sense, the source image created by the loudspeakers
will resemble a point-source, which can be placed
at a variable angle on the surface spanned by the
reproduction system.

The background behind Ambisonics, the spherical
sound field description, however, is mathematically
more powerful than amplitude panning. It pro-
vides convergent wave field reproduction within a
central listening area of limited size (sweet spot,
[5, 6, 7, 8, 9, 10]). Ambisonics can be viewn as an
alternative to wavefield synthesis, but restricts to
spherical/circular geometries. In general, distance

coding and the reproduction of directional sound
sources [11] is feasible. Moreover, the mathematical
fundamentals fully include the capture and synthesis
of incident and radiating sound fields with spherical
arrays [12, 13, 14, 15, 16, 17, 18, 19, 20, 21].

1.1. Introduction of Ambisonics

The classical Ambisonics approach relies on a plane-
wave model representing the waves emitted by the
playback loudspeakers [22]. This concept is very
present to the Ambisonics enthusiasts. However,
such a plane-wave model is neither accurate, nor
does it really simplify the concept of Ambisonics.

Also, the classical plane-wave Ambisonics slightly
obscures the real reason for the sweet spot. It mis-
leads to a simplification that the sweet spot would
arise from the fact that plane-wave analysis and
synthesis refers to one single point, only. Fortu-
nately, as Ambisonics evolves, loudspeakers and vir-
tual sources can be expressed in terms of point-
sources [5, 23, 7, 9, 10, 24]. Newer literature on
Ambisonics [6, 7, 8, 9] illustrates the two main rea-
sons causing the sweet spot.

Firstly, Ambisonics limits the angular resolution to
diminish the loss of directional information due to
angular sampling, see Fig. 1 (a) and (b). It is a
mathematical property that this limited resolution
yields a reduced range of accurate sound field repre-
sentation [7, 6, 8], the sweet spot, see Fig. 2 (a) and
(b).

Secondly, angular sampling at discrete loudspeaker
positions yields further limitations due to spatial
aliasing, see Fig. 2 (c). This spatial aliasing strongly
depends on the spherical/circular sampling strategy,
and there has been only little investigation on its ef-
fect [23, 7, 25].

It is an important achievement of the newer litera-
ture on Ambisonics [7, 6] to have these two critical
aspects seperated. However, literature severely lacks
a practical characterization of how and where spatial
aliasing affects Ambisonics.
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(a) Continuous (b) Angularly band-limited (c) Discretized

Fig. 2: The sound field of a point-source located at the boundary of a spherical/cylindrical region (a),
changed by angular band-limitation (b), and subsequent reproduction with discrete sources (c).

2. THE PHYSICS OF AMBISONICS

To physically characterize Ambisonics, a naive idea
(in analogy to [18]) is to think about an interior
sound field reproduction using a spherical or cylin-
drical membrane or boundary, i.e. in mathematical
terms: a boundary condition [26, 27].

But neither types of boundary conditions, sound
pressure (Dirichlet) or radial sound particle veloc-
ity (Neumann) seem to be admissible. Both im-
ply a reflective spherical/cylindrical boundary, caus-
ing pronounced spatial modes. Hence, frequencies
associated with the modal zeros at the boundary,
yield a numerically ill-posed mode-matching prob-
lem, cf. [6, 28].

One inconsistency of this idea is particularly easy
to show. Assume to spatially sample the boundary
condition for playback with discrete loudspeakers.
Depending on the kind of boundary condition, ei-
ther the sound pressure or the radial particle veloc-
ity must become zero on the segments between the
sampling nodes, see Fig. 1 (c). High-quality electroa-
coustic playback facilities avoid this kind of reflective
spherical/cylindrical surfaces, hopefully.

There is one concise answer to the question posed
in Fig. 1: resynthesis is easiest described with dis-
crete point-sources. This allows for unconstrained
sound pressure and particle velocities between the
discrete sources. Consequently, preceding discretiza-
tion, it is consistent to assume a source strength dis-
tribution of infinitely many point-sources instead of
sound pressure or sound particle velocity patterns.

We describe this as the nonhomogeneous Helmholtz-
equation1, cf. [27], excited by a spherical/cylindrical
source strength distribution. It can be shown that
this source arrangement is capable of reproducing
any homogeneous interior field. Within this context,
recent literature uses the terms single-layer poten-

tial [9, 29] or simple-source approach [7].

The limitation of the angular resolution before dis-
cretization of the source strength distribution, de-
picted in Fig. 1 (a) and (b), unfavorably causes a
limited size of the listening area, see Fig. 2 (b). How-
ever, this angular smoothing also limits the loss of
directional information for the playback with dis-
crete sources, see Figs. 1 (c) and 2 (c). This is the
reason for the celebrated smoothness of Ambisonics.

Note that the typical Ambisonics approach does not
directly sample the desired source strength distribu-
tion to obtain the discrete source signals. Instead
of sampling in the space-domain, the continuous de-
sired distribution is compared with the discretized
distribution in the modal spherical/circular harmon-
ics domain. Matching of these two distributions ex-
plicitly requires inversion of a system of equations
(matrix inversion) to obtain accurate results.

Despite its similarity to the classical Ambisonics
mode-matching, the hereby employed modal source

strength matching does not suffer from ill-posedness
of restricted modal frequencies.

1The Helmholtz equation (∆+k2) p = 0 is the wave equa-
tion in the frequency domain.
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The new perspectives on Ambisonics shall provide
an easier understanding of the principles of Am-
bisonics, and yield an improvement in the concept
of high-level strategies like distance coding [30] and
possible future extensions of Ambisonics sound field
reproduction. It is furthermore nice to see that no
explicit integral formulation (Kirchhoff-Helmholtz-
equation, simple-source approach, or single-layer po-
tential) is required as a direct solution is available.

The following sections consider a spherical geom-
etry only. However, a reformulation to circular-
cylindrical geometry can be found easily.

3. A CONTINUOUS SPHERICAL POINT-

SOURCE DISTRIBUTION

On a sphere with constant radius rl, the dependency
on the two space angles, azimuth ϕ, zenith ϑ, can
be expressed as a Cartesian unit vector ‖θ‖ = 1

θ(ϕ, ϑ) =





cos(ϕ) sin(ϑ)
sin(ϕ) sin(ϑ)

cos(ϑ)



 ,

so that the vector r = rl θ lies on the sphere.

Consider now continuously spread sources at this ra-
dius that excite the Helmholtz equation with a con-
tinuous distribution of source strength f(θ)

(
∆ + k2

)
p = −

δ(r − rl)

r2
f(θ). (1)

In this equation, p represents the sound pressure, ∆
the Laplace-operator, δ(r − rl) a Dirac delta distri-
bution and k = 2π

λ
the wave-number, whereby λ is

the wave length, cf. [27, 37].

The nonhomogeneous Helmholtz equation, f(θ) 6=
0, is solved by seperation of variables, using a prod-
uct Ansatz, cp. [37, 27]

p(kr,θ) = R(kr) Φ(θ). (2)

With the homogeneous and nonhomogeneous solu-
tions of the Helmholtz equation in Appendix A, the
complete solution of the spherical source strength
distribution, i.e. its spherical harmonics transform
representation φnm

φnm =

∫

S2

f(θ) Y m
n (θ) dθ, (3)

0.47 0.82 1.17 1.53 1.88
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ε2>−3dB

Sweet−Spot −3dB Error Radius, 0<N≤ 10
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r/λ
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N=3
N=4
N=5
N=6
N=7
N=8
N=9
N=10

Fig. 3: −3dB border of the listening area in wave
lengths, depending on the reproduction order N and
the source radius r0.

can be given as

p(kr,θ) = −

∞∑

n=0

n∑

m=−n

ik φnm Y m
n (θ) · (4)

·

{

hn(krl) jn(kr), for r < rl,

jn(krl) hn(kr), for r > rl.

For Ambisonics, only the first case is applicable.

4. FINITE-ORDER TRUNCATION ERROR

In [8, 6] the accuracy of the representation of plane-
waves and point-sources using a truncated order
n ≤ N has been given, depending on the radius of
observation r. We present a compact form of the
equation for point-sources and obtain a precise de-
scriptor of the resynthesis error.

Representation of a single point-source. In-
serting the spherical harmonics transform of an an-
gular Dirac delta distribution f(θ) = δ(1 − θTθ0)
pointing towards θ0

φnm =

∫

S2

δ(1 − θTθ0)Y
m
n (θ)dθ = Y m

n (θ0), (5)

into Eq. (4), yields the representation of a single
point-source at r0 ≥ r,

G(r, r0) = −ik

∞∑

n=0

n∑

m=−n

jn(kr)hn(kr0)Y
m
n (θ)Y m

n (θ0).
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The normalized squared error assotiated with a
point-source representation of finite order, as derived
in Appendix B, yields

ǫ2 = 1 −
2 kr0kr

ln
(

r+r0

r−r0

)

N∑

n=0

(2n + 1) |jn (kr) hn (kr0)|
2
.

(6)

Essentially, from Eq. (6) a radius in wave lengths r/λ
can be determinded, inside of which the resynthesis
error does not exceed a given limit.

We define the area, within 20 log10(ǫ) ≤ −3dB, as
the sweet spot. This −3dB-limit does not refer to
perceptive qualities, e.g. an audible threshold, but
complies with well-known definitions of cut-off fre-
quencies2. Fig. 3 shows the sweet spot radius as a
function of the relative source distance r0/r for vari-
ous orders N. As a rule of thumb, sources at r0/r ≥ 2
are well-modeled using the plane-waves sweet spot
size, cp. [8].

5. MODAL SOURCE STRENGTH MATCHING

In order to reproduce f(θ), loudspeakers are placed
at the set of discrete angles {θl} with l = 1, . . .L,
and driven by the gains {gl}. Each of the loud-
speakers is assumed to create the field of a point-
source, which can be expressed as the nonhomoge-
neous Helmholtz-equation

(∆ + k2)p̂ = −
δ(r − rl)

r2

L∑

l=1

gl δ(1 − θTθl). (7)

The continuous and the discretized angu-
lar source strength distributions f(θ) and

f̂(θ) =
∑L

l=1 gl δ(1 − θTθl) on the right hand
sides of Eqs. (1) and (7) can be compared directly

f(θ)
!
≈ f̂(θ), (8)

which however is problematic, since angular infor-
mation between the loudspeakers may get lost. An-
gular smoothing and matching in the modal angular
harmonics domain prevents this loss of information.

2Below this limit the squared resynthesis error is smaller
than half the squared desired field.

Angular band-limitation. Ideal angular low-
pass filtering is denoted as BN {·}, here. It corre-
sponds to a truncation of spherical harmonics or-
ders n > N. The comparison between the continuous
and discretized angular source strength distribution,
both at ideally smoothed resolution, remains what
we refer to as modal source strength matching

BN {f(θ)}
!
=
gl

L∑

l=1

gl BN

{
δ(1 − θTθl)

}
,

φnm
!
=
gl

L∑

l=1

gl Y m
n (θl), (9)

∀0 ≤ n ≤ N,−n ≤ m ≤ n.

In order to solve the system of equations in Eq. (9),
the modal source strength matching approach is usu-
ally reformulated in matrix notation.

Matrix/vector notation. The following conven-
tions are introduced

φN
!
=
g
YN g
︸ ︷︷ ︸

φ̂N

, (10)

with YN = (yN(θ1), yN(θ2), . . . , yN(θL)) ,

g = (g1, g2, . . . , gL)
T

,

yN(θ) =(Y 0

0
(θ), Y

−1

1
(θ), Y 0

1
(θ), Y 1

1
(θ), ..., Y N

N
(θ))T

,

φN = (φ0,0, φ1,−1, φ1,0, φ1,1. . . . , φN,N)
T

,

diagN {anm} = diag {aN} .

5.1. Modal source strength matching

Eq. (10) represents the modal source strength match-

ing equation in matrix/vector form. To match φ̂N

to a desired modal source strength φN
!
= φ̂N, a de-

coder matrix DN is introduced, which controls the
speaker gains g =DN φN. We obtain from Eq. (10)
the smoothed reproduced modal source strength

φ̂N = YN DN φN. (11)

It matches exactly if DN is the right inverse of YN

DN = Y T
N

(
YN Y

T
N

)−1
. (12)

Note that modal source strength matching is well-
conditioned as long as the right-inverse of YN is,
cf. [25]. It does not exhibit restricted frequencies
as the mode-matching approach.
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Synthesis equation. Eq. (4) in vector notation
determines the resynthesized sound pressure

p̂(kr,θ) = −ik yT
Q(θ) diagQ {jn(kr)hn(krl)} φ̂Q.

(13)

It uses the unsmoothed reproduced modal source
strength

φ̂Q = YQ DN φN. (14)

Exploiting the orthonormality of the spherical har-
monics, cf. [29],

∫

S2

yQ(θ2)y
T
Q(θ2) dθ2 = I, (15)

the resynthesis Eq. (13) transforms to the spherical
harmoncis domain ψ̂Q(kr) =

∫

S2 yQ(θ) p̂(kr,θ) dθ,
the spherical wave spectrum of the sound pressure,
cf. [26],

ψ̂Q(kr) = −ik diagQ {jn(kr)hn(krl)}YQDN φN.
(16)

For the sound pressure and its spherical wave spec-

trum the Parseval theorem holds, cf. [29],

∫

S2

|p̂(kr,θ)|2 dθ ≡ ‖ψ̂Q(kr)‖2. (17)

This theorem simplifies the analysis of the squared
resynthesis error.

Resynthesis error. The synthesis error is the de-
viation of the resynthesized from the desired field

eQ = ψQ − ψ̂Q. (18)

Please note that YQ DN 6= I in the resynthesis
Eq. (16) readily contains the inherent spatial aliasing
artifacts at the orders N < n ≤ Q. Note again that
for the orders 0 ≤ n ≤ N synthesis is exact eN = 0
if a decoder exists, fulfilling YNDN = I. However
in common practise, angular band-limitation repro-
ducing this portion of the spherical wave spectrum
exclusively is not feasible for playback.

Usually, the desired modal source strength is chosen
corresponding to a virtual point-source at the angle
θ0 and the radius rl. According to Eq. (5) this is the
low-order portion of φQ = yQ(θ0). The resynthesis

error depends on the angular position θ0 of a virtual
point-source, the size rl of the playback facility, and
the radius of observation r,

eQ = ik diagQ {jn(kr)hn(krl)} · (19)
[
I − YQ

(
DN, 0

)]
yQ(θ0).

The squared error is ǫ2 = ‖eQ‖
2.

Before starting a detailed analysis of the resynthesis
error and spatial aliasing, distance coding [30, 31]
is introduced to represent sources at variable radius
r0 6= rl.

6. SOURCE ENCODING WITH DISTANCE

Virtual radial scaling of the playback sphere, or dis-

tance coding, applies a useful trick: the radial func-
tion hn(krl) in Eq. (16) is compensated for by setting

φN = diagN

{
hn(kr0)

hn(krl)

}

φ̃N. (20)

At finite order Q = N, the term YNDN in Eq. (16)
becomes the unity matrix. This achieves a replace-
ment of hn(krl) by hn(kr0),

ψN(kr) = −ik diagN{jn(kr)hn(kr0)} φ̃N,

a virtual scaling of the radius of the playback facility.

Spatial encoding of arbitrary point-sources.
A signal s(ω) is encoded into an Ambisonics sig-
nal sN(ω) by multiplication with its desired modal
source strength distribution φN. To make it arrive
from the direction θ0, the we set φN = yN(θ0). From
sN(ω), the loudspeaker signals x(ω) are obtained by
the decoder DN, cf. Eq. (12),

sN(ω) = yN(θ0) s(ω) (21)

x(ω) =DN sN(ω). (22)

Using radial scaling Eq. (20) for distance coding [30],
the signal s(ω) encoded in both, angle and radius, is

sN,rref (ω) = diagN

{
hn(kr0)

hn(krref )

}

yN(θ0) s(ω). (23)

Note that the radius rref is usually given by the size
of the playback arrangement, and in principle limits
the usability of the Ambisonics signal sN,rref (ω) to
this particular size.
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However, a signal encoded for a given reference ra-
dius rref can be adjusted to fit the actual radius rl

of the playback facility using distance coding twice

sN,rl(ω) = diagN

{
hn(krref )

hn(krl)

}

sN,rref (ω). (24)

7. THE EFFECT OF ANGULAR ALIASING ON

AMBISONICS

Using distance coding, the error measure consid-
ered in Eq. (19) can be extended to allow for vir-
tual point-sources at arbitrary radius. As derived in
Appendix B, the extended normalized squared error
yields

ǫ2 =
8π kr0kr

ln
(

r+r0

r−r0

)

∞∑

n=N+1

n∑

m=−n

|enm|
2
, (25)

with

enm = jn (kr)

[

hn(kr0)Y m
n (θ0)−

hn (krl)
L∑

l=1

Y m
n (θl)d

T
l diagN

{
hn′ (kr0)

hn′ (krl)

}

yN(θ0)

]

,

and dT
l representing the lth row of the decoder ma-

trix DN, cf. Eq. (12).

In comparison to Eq. (6), the extended error mea-
sure in Eq. (25) exhibits new dependencies on the
angle of the virtual point-source θ0, and the loud-
speaker layout rl {θl}. To carry out a thourough
case study on the resythesis error for a loudspeaker
layout, we are forced to specify the set of angular
positions {θl}.

Hyperinterpolation as loudspeaker layout.
In order to simulate spatial aliasing, hyperinterpo-

lation has been chosen as angular sampling stragegy
for the loudspeaker layout {θl}, see [32]. This choice
has been made as it is expected to yield a worst-case

scenario in terms of spatial aliasing. The fact that
hyperinterpolation uses the smallest posible number
of loudspeakers L = (N+1)2, leads us to this expec-
tation. As best case, however, decoding of a point-
source coinciding with one of the speakers, e.g. the
first one r0 = rlθ1, yields a non-zero signal for this

0 0.5 1 1.5 2 2.5 3

2

4

6

8

10

12

14

N

r/λ

ε2<−3dB

ε2>−3dB

Sweet−Spot Radius

min−max
IQR
mean
cont.

Fig. 4: Overview of the −3dB sweet-spot size in wave
lengths for varying order 1 ≤ N ≤ 15 and relative
distances rl/r = r0/rl = 50. The diagram shows
that the average, 25-75-IQR, and minmax-range of
the sweet-spot size allow for a linear approxima-
tion. The black dashed line (labeled cont) marks
the sweet-spot size for pure finite-order truncation.

particular speaker, only. This corresponds to the
exact resynthesis of a point-source, which looks fa-
vorable at first sight, but might disturb the smooth
resynthesis of Ambisonics playback.

Spiral points for virtual point-source posi-
tions. To reduce the analysis of the synthesis error
by the dimension of the virtual source angle θ0, sta-
tistical parameters are obtained from a set of 1000
angles {θ0}. As a sampling strategy for these angles,
the spiral points have been chosen, cf. [33]. These
points nearly uniformly cover the sphere, which en-
ables a consistent estimation of a mean square er-
ror. In the simulation, only one of these points co-
incides with a hyperinterpolation node. This partic-
ular point achieves a minimum resynthesis error of
ǫ2 = 0 (see hyperinterpolation).

Example 1: Contours at rl/r, r0/r = 50. The
first simulation of the spatial resynthesis errors with
Eq. (25), uses a fixed constellation rl = r0, r0/r =
50 of source and playback radius. The −3dB tran-
sition of the error along the normalized radius of
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r L/r
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Fig. 5: The contours indicate the −3dB sweet-spot size in terms of r/λ in its average, 25-75-IQR, and min-
max range for a playback order of N = 5. The dashed black line on the floor and back plane (labeled cont)
shows the −3dB sweet-spot size of pure finite-order truncation error without spatial aliasing.

observation r/λ, our definition of the sweet spot
size, has been simulated for the orders 1 ≤ N ≤ 15.
Fig. 4 shows the statistics of the sweet spot size, and
indicates its average, 25%-75%-inter-quartile-range
(IQR), and min-max range. In most cases, spatial
aliasing decreases (and modulates) sweet spot size in
comparison with its pure finite-order truncation size.
Only for the exception that the virtual point-source
position coincides with a loudspeaker position, the
sweet spot size increases (see hyperinterpolation).

Example 2: Contours for N=5. The second
simulation illustrates the dependency of the sweet
spot size on the normalized radius of the loudspeaker
layout rl/r, and the virtual point-source r0/r for the
order N = 5. Fig. 5 shows the statistics of the sweet
spot size, i.e. indicates its average, the 25-75-IQR,
and the min-max range. As a rule of thumb, for
r0/r, rl/r ≥ 2, the transition radius asymptotically
stalls at a constant value. Again, the sweet spot
is exceptionally large for the virtual source position
that coincides with a loudspeaker position (see hy-

perinterpolation).

8. CONCLUSION

In this paper we have shown an alternative formu-
lation of Ambisonics by directly solving the nonho-
mogeneous Helmholtz-equation and introducing the

concept of modal source strength matching, which
does not suffer from ill-conditioning.

It does not withdraw a simple interpretation of
Ambisonics without distance coding. Therein the
playback loudspeaker arrangement is used to re-
produce virtual point-sources at the surface it
spans. For this purpose, only real-valued frequency-
independent gains are required.

It also demonstrates the influence of finite angu-
lar resolution (order truncation) and spatial alias-
ing on the resynthesis error, successively. To this
end, the synthesis error has been compactly reformu-
lated, covering also distance coding of virtual point-
sources.

A thourough case study has been carried out, which
investigates the dependency of the sweet spot size on
the playback order, the size of the playback arrange-
ment, and the position of a virtual point-source.
Clever normalization allows to summarize the essen-
tial outcome of this study in few diagrams. However,
the given definition of the sweet spot size is purely
mathematical, hence does not cover perceptive as-
pects. Evaluation of the preceived synthesis accu-
racy requires dedicated listening tests, cf. [34, 35].
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APPENDIX A

This appendix describes the homogeneous and non-
homogeneous solution of the Helmholtz equation
Eq. (1).

Homogeneous solutions. In the spherical coor-
dinate system, the Helmholtz equation yields the fol-
lowing base solutions, cf. [27, 29, 36, 26]

ph(kr,θ) = Y m
n (θ)

{

jn(kr), incident field

hn(kr), radiating field.

(26)

with n, m ∈ Z : n ≥ 0,−n ≥ m ≥ n. The real-
valued spherical harmonics Y m

n (θ) are the harmonic
solutions for the angular part, and the radial part is
solved by the spherical Bessel and Hankel functions
jn(kr), hn(kr) , cf. [36, 26]. Note that all admissible
solutions must take the form of Eq. (26) or weighted
sums thereof.

Nonhomogeneous solution. According to
Eq. (2), the angular part Φ(θ) is easily described
by the spherical harmonics transform pair of the
source strength f(θ)

φnm =

∫

S2

f(θ) Y m
n (θ) dθ,

f(θ) =

∞∑

n=0

n∑

m=−n

φnm Y m
n (θ),

hence the solution for one of the harmonics becomes

p(kr,θ) = R(kr) φnm Y m
n (θ). (27)

With the Laplace operator split up into its ra-
dial and angular part ∆ = ∆r + ∆θ, and the an-
gular Eigenvalues and Eigenfunctions ∆θY m

n (θ) =

−n(n+1)
r2 Y m

n (θ), the insertion of the Ansatz re-
sults in a nonhomogeneous, one-dimensional spheri-
cal Bessel differential equation, cf. [27],

[

∆r + k2 −
n(n + 1)

r2

]

R(kr) = −
δ(r − rl)

r2
. (28)

Since two independent homogeneous solutions
jn(kr), and hn(kr) solve the above differential equa-
tion, the nonhomogeneous radial part R(kr) is

solved by variation of parameters, cf. [37]

R(kr) = −jn(kr)

∫ ∞

r

hn(kr)

W (kr)

δ(r − rl)

r2

dkr

k
− (29)

hn(kr)

∫ r

0

jn(kr)

W (kr)

δ(r − rl)

r2

dkr

k
,

wherein

W (kr) =

∣
∣
∣
∣

jn(kr) hn(kr)
j′n(kr) h′

n(kr)

∣
∣
∣
∣
=

1

i(kr)2

is the Wronski-determinant, cf. [37, 29], of the two
solutions. The result is given in Eq. (4).

APPENDIX B

A normalized error measure for finite-order synthesis
of a point-source can be found in analogy to [8] as

ǫ2 =

∫

S2 |G(r1, r2) − p(kr1,θ1)|
2

dθ1

η2
. (30)

A Green’s function (point-source) in Cartesian and
spherical coordinates is described as

G(r1, r2) =
e−ik‖r1−r2‖

4π ‖r1 − r2‖
(31)

=
k

i

∞∑

n=0

n∑

m−n

jn(kr1)hn(kr2)Y
m
n (θ1)Y m

n (θ2),

with r1 = r1 θ1,

r2 = r2 θ1,

and r1 ≤ r2.

For the normalization term η2, the surface integral
of the absolute-squared point-source over a sphere
requires evaluation

η2 =
1

(4π)2

∫

S2

dθ1

‖r1 − r2‖
2 ,

and simplifies to

η2 =

∫ 2π

0
dϕ

(4π)2

∫ 1

−1

dµ1

r2
1 + r2

2 − 2r1r2µ1
,

=
ln

(
r1+r2

r2−r1

)

8πr1r2
, (32)

using the surface element dθ1 = dµ1 dϕ, µ1 =
cos(ϑ1), and assuming r1 = ‖r1‖, and r2 =
(0, 0, r2)

T.
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Using the Parseval theorem, Eq. (17), to calculate
the same within the spherical wave spectrum, see
Eq. (31), with θ2 = iz = (0, 0, 1)T and r2, yields
(see also [8, 6])

η2
Q = k2‖diagQ{jn(kr1)hn(kr2)}yQ(iz)‖2. (33)

Note that the latter formulation allows for a reduc-
tion of the order Q → ∞ to a finite value N.

Finite-order truncation. As for the truncation
error, the truncated components of the spherical

wave spectrum do not mix in the vector norm, it
may be re-written as:

ǫ2 =
η2 − k2‖diagN{jn(kr1)hn(kr2)}yN(iz)‖2

η2
.

(34)

With the spherical harmonics addition theorem [29]
yN(iz)y

T
N(iz) = diagN

{
2n+1
4π

δm

}
, this equation ex-

actly corresponds to Eq. (6).

Error with spatial aliasing. Spatial aliasing
makes the error dependent on the position of the vir-
tual source, thus does not allow selection of a fixed
position. However a probe for one specific virtual
point-source position r2 θ2 may be taken

ǫ2 =
k2

η2

∥
∥
∥
∥
diagN{jn(kr1)hn(kr2)}· (35)

[
I − YQ

(
DN, 0

)]
yQ(θ2)

∥
∥
∥
∥

2

.

Using distance coding for playback loudspeakers at
the radius r3, the expression gets more complex

ǫ2 =
k2

η2

∥
∥
∥
∥
diagN{jn(kr1)}· (36)

[

diagQ{hn(kr2)} − diagQ{hn(kr3)}·

YQDN

(

diagN

{
hn(kr2)
hn(kr3)

}

, 0
)]

yQ(θ2)

∥
∥
∥
∥

2

.

Average error. Despite the dependency of the er-
ror on the choice of the virtual point-source position

r2 θ2, an analytic calculation of its average is fea-
sible. Using an integral over all virtual source po-
sitions, the property ‖eQ‖

2 = eH
QeQ = Tr{eQe

H
Q}

and the orthonormality of the spherical harmon-
ics, Eq. (15), can be exploited. Hereby, the av-
erage is obtained by replacing the desired modal
source strength yQ(θ2) with a scaled vector of ones

1√
4π

1 = 1√
4π

(1, . . . , 1)T in the above equations.
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