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Abstract: Spectrogram analysis frequently suffers from inadequate time or frequency resolution, respectively. However,
time-frequency reassigned spectrograms offer an attractive extension regarding the resolution trade-off. Specifically, this
method deduces an improved time-frequency localization from the derivatives of the spectrogram phase, with respect t«
time and frequency. For high-quality images of reassigned spectrograms, however, there is a requirement for inconve-
niently short hop-sizes. Recently, the information of the cross-derivatives was introduced as local indicator for sinusoidal

vs. impulsive signal characteristics. In this contribution, we try to extend the reassigned spectrogram points to lines, in

order to allow for bigger hop-sizes. To this end, the second-order derivatives give coarse intermediate estimates of the
chirp-rate. Using the cross-derivative indicator, we combine these intermediate estimates to a more accurate chirp-rate
estimator. The properties of the novel time-frequency distribution is demonstrated in several examples.
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1. INTRODUCTION mates of the group-delay (GD) and the instantaneous fre-

qguency (IF) that refine the localization in the STFTs.
The magnitude of the short-time Fourier transform (STFT)

can easily be calculated for a quantization grid in time aRkdirthermore, Nelsori[4] and Folull [7] offer an interpreta-

frequency. Using the window siz&¥ and a constant time-tion of the mixed derivative:

interval IV, for the periodical discrete Fourier-transforms

(DFTs) within the STFT, we obtain an analsyis grid at dis- @, [nk] |- -1 stationary

crete timest[n] = n - Nyop/fs and frequencieg[k] = Owon — 0  impulsive

fs/N. As described in literature, utilization of smaller

Niop OF zero-padding the DFT for the visual interpretatiore. this qualifier describes thmpulsivenessf the signal.

of the spectrogram, can only bring moderate improvemehighe following sections, we demonstrate the performance

(cf. Auger [1]). The t-f-resolution in a strict sense, is ndf the other second order phase-derivatives as chirp-rate es-

enhanced by this attempt. timators. We introduce a new chirp-rate estimation, com-
bining the advantage of both estimators. The estimator pro-

However, it is possible to refine time-frequency localizatiorides an improvement to specrogram analysis for visual in-

in the short-term Fourier-transform. We may assume ttggtection, and might prove useful in complex spectral mod-

an STFT-bin contains either a rather sinusoidal, or ratheding tasks.

impulse-like signal. Using the derivatives of the phase-

spectrum, we indeed obtain refined t-f-localization for the 2. TIME-FREQUENCY REASSIGNMENT

STFT evaluated at = mNj,, andk = 0...N/2, cf. []:

®3)

2.1. First-Order Fast Phase Derivatives

. 00, [n, k
) = 22md ) -
w There are several publications (Auggr [1], Nelsbn [4]) de-
O (X [n,k]) = 0% [nk] N _ L. ) scribing the computation of the derivatives in frequency do-
’ on 2 main, using discrete Fourier transforms of differently win-

Basically, the above equations may be interpreted as edtiwed versions of the sigaln|. According to Fitz[[6], we
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(a) STFT-magnitude spectrogram
time—frequency-reassignment
N=16pt, hop=4pt; sweep angles =[87 ,60 ,30 ,0] []
1+ -
0.8 .
06| . g
%: . o « € & 8 » s
0.4
0.2
O —
1 1 1
0 50 100 150

n [pt]

(b) Time-frequency reassigned spectrogram

Figure 1: These two figures show a comparison between the Spédtrograrfi I(h), and the time-frequency reassigned

spectrograri I(b).

may call these estimatdast phase derivativesWe need 2.2. Time-Fregquency Reassignment
the following STFT-spectra:
As stated above, the first and the second expressiohl Eq. 9
B and Eq[ID have a very simple interpretatiofijn, k] is
Xlm.k] = DFT {xln +mNpop] -winl}  (4) the refined location of the compongnt k] in timL (tilne-
Xe[m,k] = DFT {z[n +mNpop| - wi[n]}  (5) reassignment), whereasn, k| refines the localization in
Xa[m,k] = DFT {z[n+ mNnop| - wq[n]}. (6) frequency (frequency-reassignment). An example thereof
is illustrated in Fig[L.

In the above equations;[n] is a symmetric window func- 3. SECOND ORDER FAST PHASE DERIVATIVES
tion (e.g. hanning) that determines the other time- and fre-

quency derivative window functions: According to Fitz [6], there also exist fast phase derivativ
formulae for the pure and mixed second order derivatives,
using:
wiln] = n-wln] ()
d
waln) = —wlnl. ®)
n Xat [m, k] = DFT {z[n + mNpop) - war[n]} (12)
The following formulae for théastfirst-orderphase deriva- KXo [m, k| = DFT {x[n +mNnop| - wi[n]} (13)
tivesare given in Fitz[[B]: Xaa[m,k] = DFT {x[n + mNnop| - waa[n]} (14)
. oD
fln, k] = # (9) and the windowing functions:
{Xt mn, k
0P, waen] = n- iw[n] (15)
oln k] = % - Nﬂ (10) )
n wuln] = n®-win) (16)
= (11) d?
{ } wqg[n] = —wln]. a7)



chirp-rate estimator: (d’®/dw?) ™
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(a) Time-frequency reassigned spectrogram with the dlaitg-estimationy; g [n, k].
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(b) Time-frequency reassigned spectrogram with the dfsitp-estimationyg p [n, k).
Figure 2: The chirp-rate estimation with.
In particular, the derivatives are: whend?® /dwdn — 0.
0?0y [ k] g  Xat [, k] (18) The following formulae show, how the two pure second or-
owon X [n, k] der derivatives can be used as chirp-rate estimators:
Xt [n, k] Xq[m kz]} 2
_%{ ) LA 20, [k
X2 n, k] vrl k] = — s (21)
02®, [n, k] N2 AN 02®, [n, k]
ik bk Rl R 2t B 19 _ z [
2 SV X mw (19) Yapln, k] < 3 > : (22)
e { Xt [n, k] } These two estimates provide a linear extrapolafijyn +
X [n,k] |’ nobs, k| Of the instantaneous frequency reassignment at time
9%, [n, k] [ Xdln K] 2 instathn + Tobs- Whereij[n, k] is fche timetfrequency-
oz - m (20) reassignmentin timej[n, k] the reassignmentin frequency,
’ andn,s the observed sample around the time indef the
Ly Xaa [, k] ' analysis DFTSs:
X [n, k]

Qn + neps, k] = @[n, k] + v [n, k] (nops — [0, k]) (23)

For graphical representations and some theoretical aspect
the description of the chirp rate as an angle within the dis-
crete time-frequency grid is useful:

3.1. CHIRP-RATE ESTIMATION
We can interpret the second-order phase derivatives as:

N
e 020 /0wdn:  the impulsivenessof the signal aln,k] = arctan (7[7%/?] : g) : (24)
(cf. Fulop [1], Eq[B)

e 02®/0n* change rate of the instantaneous frdtcan easily be shown that the two second order derivatives
quency for approximately stationary signals, i.e. whamr.t. n» andw tend to be very imprecise if the underlying
0% /0won — —1, signals are either too impulsive, or too stationary. The sig

nals were Gauss-windowed chirps, each centered at the bin-

e 0°®/0w?: change rate of group-delay over frequencfrequencyN/4 + 0.3. An illustration thereof can be found
i.e. dispersive characteristics of impulsive signalis Fig.[d.



chirp—rate estimator: composite
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Figure 3: It can be clearly seen that the composite estintatmbines some advantages of both estimators. On the other
hand some error remains.

Values of the mixed derivative for varying 5 CONCL US| ON

chirp—rate a=0...90°

oz Tonts We have shown an extension to the time-frequency reas-
= ' g’igg signment technique applying chirp-rate estimation. In-add
£ 0 128pts tion to time-frequency localisation, this method providges
s < .
£ 06 = formation about the slope of the regarded spectrogram com-
w . .

PN S S ponent. Several examples of the different estimators could

be given, and a comparison to the new estimator has been
o 20 20 60 80 made. Prospective applications might not only be found in

sweep rate o in [] spectrogram illustration, but also in computer assisted in
terpretation of specral data. Nevertheless, furhter imgro
ents of this technique are required, and will pose a future
topic in our research.

Figure 4: Average values of the mixed derivative w.r.t. var
ing chirp-rates at different DFT sizes.

3.2. Mixed Derivative I ndicator 6. ACKNOWLEDGEMENTS
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derivative in Fig[l, which is in fact similar to the descrip*
tion in Eq.[3. The chirp-rate angle proved to be very useful
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We chose a distortion functiop{z:} = x. Further investi-
gation on different kinds of distortions seem to be useful, i
particular regarding the results in Hg. 4.

4.1. Example
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