Proc. of the 6™ Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

A REAL-TIME AUDIO RENDERING SYSTEM FOR THE INTERNET (iARS),
EMBEDDED IN AN ELECTRONIC MUSIC LIBRARY (IAEM)

Christopher Frauenberger

Institute of Electronic Music and Acoustics
University of Music and Dramatic Arts Graz,
Inffeldgasse 10/3, 8010 Graz, Austria
frauenberger@iem.at

ABSTRACT

The internet Audio Rendering System (iARS) is an Internet browser
extension extending the browser’s capabilities with real-time sig-
nal processing. The proposed system allows to receive audio streams
from the Internet and apply various audio algorithms with no ad-
ditional computational power needed from the server. iARS is part
of the Internet Archive of Electronic Music (IAEM) project which
is also presented in this paper.The IAEM is intended to be a plat-
form to access an extensive and distributed archive of electronic
music. It combines collaborative tools, real time signal process-
ing on the client side and the content of the archive to a powerful
teaching, research and publishing tool.

1. INTRODUCTION

The TAEM project! is developed to present an extensive amount of
digitised music following a new approach. It extends the capabili-
ties of an ordinary electronic library with a collaboration platform
and a audio rendering machine in order to make it an Internet based
multi-media information source for students, lectures and other re-
searchers.

There are many fields of applications possible for the system pro-
posed. Because of the flexible design of the audio rendering ma-
chine it is possible to introduce real-time signal processing with
user-defined algorithms to web based applications. Through the
multi-channel streaming capability multi-track recordings can be
received in their correct historical and acoustical context. This
predestines the system to be used in teaching and research. How-
ever, in principal every signal processing task can be delegated to
the iARS plugin.

The distributed architecture of the content databases allows the
integration of electronic archives from different attending institu-
tions. The partners share the common IAEM portal to access the
data, but the databases are located at the institutions. This is a very
scalable approach because the effort to migrate and to maintain the
data is not centralised at the operator of the IAEM portal. It splits
the efforts for hardware and bandwidth between the partners. Also
legal aspects are considered by this architecture. In legal terms
there is a difference whether the digital copy remains physically at
the owner’s location or not. Allowing distributed databases instead
of one central database improves the legal certainty.

The IAEM system is also intended to be a publishing platform for
the users. It allows to publish music pieces as well as algorithms

'Home: http://iaem.at

Winfried Ritsch

Institute of Electronic Music and Acoustics
University of Music and Dramatic Arts Graz,
Inffeldgasse 10/3, 8010 Graz, Austria
ritsch@iem.at

for the audio rendering. It is hoped that the system will serve as a
vital platform for many people contributing to its content.

2. THE ARCHITECTURE

The architecture of the IAEM system is a classical server-client
approach with distributed databases as back-end data source. But
clients may also connect to the content databases directly. Figure
1 illustrates the approach.

Browser + iARS plugin

direct Audio streaming (mp3,0gg/vorbis)

Contem\

Databases Clients

>
=}
<
S
g
E

-

™~

.

Figure 1: Basic structure of the IAEM including client terminals

The core is the IAEM portal server which provides all collabora-
tion tools and a content management system. This portal may con-
nect to a list of content databases where the music pieces are stored
along with some additional meta-data like information about the
composer, the performing orchestra etc. The portal can process
search-queries on the data in order to offer it to the user via the
web interface. The user can browse through the information, at-
tend to discussions or select a music piece and a audio rendering
algorithm for listening. If the user decided to receive a piece of
music, the iARS browser plugin is started at the client. It loads the
chosen algorithm and connects to the content database to receive
the requested music piece as an audio stream. The plugin also pro-
vides a graphical user interface in the browser window. The GUI
contains controls with which the behaviour of the audio rendering
algorithm may be altered during operation.

The direct connection between the client and the content database
decreases the hardware requirements for the IAEM portal as the
audio streams do not need to be routed through the portal.

DAFX-1

Proc. of the 6™ Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

3. THE CONTENT DATABASES

A TAEM content database system consists of three main compo-
nents. The database itself is storing references to the audio data
in the file-system and the additional meta-data. This database can
be queried by the IAEM portal through a standard SQL interface.
The control block is also communicating with the IAEM portal.
It is responsible for carrying out commands received by the portal
via a XML-RPC interface [1]. With these commands the portal
can initialise a stream, start or pause it and remove the stream-
ing mountpoint. A standard streaming server is part of the content
database system for streaming the audio data. Figure 2 illustrates
the architecture.

Client
é Security Layer
Portal =
- .5'
XML-RPC =
S
Streaming Server
Portal Content Database
SQL Querys Digitised Music + Meta Data

Figure 2: Content database system

In order to provide multi-channel capabilities the IAEM content
database system needs to employ a streaming server technology
which supports multi-channel audio formats. Ogg vorbis is a new
compressing audio data format for encoding mid to high quality
audio at variable bitrates from 16 to 128 kbps/channel. Since ver-
sion 1.0 rcl this standard also provides channel coupling mech-
anisms designed to reduce effective bitrate by both eliminating
interchannel redundancy and eliminating stereo image informa-
tion labelled inaudible or undesirable according to spatial psychoa-
coustic models [2].

Along with references to the audio data the content database con-
tains meta-data related to the music pieces. The design is based
on a relational database structure and is similar to commonly used
library systems. It follows cataloguing standards to make data mi-
gration as easy as possible. The interface for portal queries is a
standard SQL command set.

The control block is a simple state machine receiving commands
from the portal and controlling the streaming server and a security
layer. Implementations of XML-RPC are available for the most
common programming languages. The standard also proposes in-
trospection methods and multicalls.

4. THE IAEM PORTAL

The IAEM portal is a content management system with various
collaboration tools and additional features to drive the iARS plugin
and to query the content database systems. The chosen framework
is Zope extended with CMF and Plone.

The data presented by the portal is legally sensitive so that a secure
authentication method is compulsory. The Zope system provides

a LDAP authentication product with which the user must log in
before the portal can be used. This allows also a personalised en-
vironment with user defined folders and content. The rights can be
set for every single user so that the access to music pieces can be
clearly determined to prevent any legal conflicts.

The collaboration and exchange of information is supported by
a set of tools including calendars, Wikis® and a discussion tool.
The discussion tool developed for IAEM combines the capabilities
of an mailing list and a discussion forum including an archive of
contributions. The intention is to keep the number of tools low due
to simplicity in the usage of the portal, while providing the most
important features of commonly used collaboration tools.
Information digging is supported by a normal single line search
and a more powerful advanced search facility. Another way to re-
trieve information is to use personal Information Agents. Agents
reflect a certain interest of the user and try to collect relevant in-
formation. Users may create several agents with very different pa-
rameter settings, each representing a topic of interest for the user.
The agents search for collaborations tools, music pieces and other
meta-data and present the collected information to the user.

For publishing the portal also provides uploading to a content
database. The access rights for user published data can be set by
the author via the portal.

5. THE iARS BROWSER EXTENSION

iARS (internet Audio Rendering System) is a browser plugin ex-
tending the browser’s capabilities with a flexible audio rendering
machine. It can be invoked by an HTML “object” tag within web
pages. The signal processing is done by the Pure Data® which is
launched by the plugin and remote controlled via a XML-RPC in-
terface. The algorithm processed can be defined as a regular Pd
patch along with a graphical representation of the patch. This is
done using a IDL (interface description language) introduced in
section 5.4. According to this description the plugin draws con-
trols into the browser window with which the behaviour of the al-
gorithm can be altered during operation. Figure 3 shows the iARS
plugin embedded in a browser window.

5.1. Operation

The plugin is launched by using the “object” tag embedded in reg-
ular HTML code. A MIME type (application/iARS) is registered
by the plugin at the browser which refers to the data type asso-
ciated. Whenever a object tag is referring to this MIME type the
browser starts the iARS plugin (available as a shared library ob-
ject). A window handle provided by the browser is assigned to
the plugin for its graphical representation. The object tag includes
three parameters determining the data sources. A typical tag looks
like:

Listing 1: Embedded object tag

<html>
<body>
<object type="application/iARS”
width="400"

2Wiki is an open editing system that allows multiple users to work
on the same web content. It supports a history and reviewing processes.
http://www.wiki.org

3Pure Data by Miller Puckett http://crca.uscd.edu/ “msp

DAFX-2

Proc. of the 6™ Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

fr Page — Hozilla {Bunild 107 lifs
V.EI\E Edit ¥iew Go Bookmarks Tools Mindow Help Debug QA

é- @ \3 (gé- |& file/ithomedtauenbe/l AEMY sre/clienti ARSAgst himl

| Back Fonward | Reload Swp

|| 7kHome | wiBookmarks g The Mozilla Organiza.. ¢ Latest Builds

1ARS Test Page

~Test

| DSP an
-~ Sliders
Yolume RoomSize —Source Position
fad

13 i

_?” o Il

Figure 3: Screenshot of the iARS plugin embedded in a browser
window

height="300"
<param name="PATCH”

value="http ://iaem. at/test.pd’>
<param name="GUI”

value="http ://iaem. at/gui.xml”>
<param name="STREAM”

value="http :// content.at/AS52SA .ogg”>
</object>

</body ></html>

The patch parameter refers to the implemented algorithm to be
used as a URI, the GUI parameter to the corresponding IDL file de-
termining the graphical representation of the patch. The files will
be requested by the plugin and must be available from the server.
The stream parameter provides information about the audio data
source. It tells the plugin to which server to connect and the name
of the streaming mountpoint. For security reasons the mountpoint
name is randomly generated by the portal for each session. This
secret name is distributed only to the content database system and
the requesting browser so that no other user may have unauthorised
access to the streamed data.

For future versions of iARS a more complex security concept is
planned employing certificates for authorised clients and content
databases. With this the peer authenticity will be determinable
unambiguously and the connection may be encrypted.

5.2. Components of iARS

The collaboration of iARS and the hosting browser is ruled by the
Netscape plugin API[3]. This API determines the way plugins are
called and their entire life-cycle. Considering that life-cycle and
the requirements for operation, the following components can be
identified (as shown also in figure 4).

e The plugin API module
o Initialisation task module

o Central controlling module

Graphical output
e Pd communication (XML-RPC) module

Bmowsar

Plugin AP

I—_I—I Browsar Window

1
]
1
1 1
[]
1
{ARS browssr plugin |
Plugin AP |
L] |
1
I
’

lJ—_I Plugin Initialzation lJ—_I Plugin Contol Gmaph
L |

4 A

PD Communication

iOpa mting =ystam Box

PD appliation

IJ__I |PDCmmmunm(bn | |Aud'n Stisaming | [
‘ | | 3

Figure 4: Deployment diagram for the iARS browser plugin

5.3. Pure data

Pure Data is a real time signal processing tool for PCs available for
different operating systems like Linux and Windows[4]. There are
many extension libraries available for Pd since Pd provides a sim-
ple interface to extending its capabilities. The two main extensions
developed for the IAEM project are the XML-RPC interface and
the improved ogg vorbis streaming external. The main advantage
of using Pd as the processing core application is that there already
exist many patches. The generic approach of the plugin allows to
reuse these patches only with minor adjustments.

Ogg/vorbis is a standard for streaming compressed audio over the
net. Support for ogg/vorbis in Pd was basic when IAEM was
launched. Streams could only be stereo and there was a signif-
icant threading problem causing klicks. The pdogg library ini-
tially written by Olaf Matthes* was extended and threading was
improved so that the external now is capable of transmitting and
receiving multichannel streams in high-quality. The implementa-
tion is based on the reference libraries available from the ogg/vor-
bis website’.

The XML-RPC interface to the Pd program is intended to become
a comfortable standard of remote controlling the application. It is
possible to load and close patches, but also to communicate with
elements of a patch. It replaces the net send and netreceive
commands with a more flexible and powerful communication in-
terface.

5.4. Graphical representation

The graphical representation of a patch is not defined from the data
within the patch as Pd’s GUI is presenting it. We have chosen to
use an extra file to determine the graphical representation in the

“http://www.akustische-kunst.org/
5 Available from http://www.vorbis.com/download.psp

DAFX-3

Proc. of the 6™ Int. Conference on Digital Audio Effects (DAFx-03), London, UK, September 8-11, 2003

browser window because the original way seemed to be too com-
plex and technically orientated. The target user group may not be
familiar with Pd and may be easily confused by its complexity.
This demanded the definition of an interface description language
(IDL) more suitable for our application than the existing. The im-
plementation of the controls was made using Trolltech’s Qt toolkit
[5].

Within the IDL file several controls are defined which are bound to
elements of the Pd patch. If either the user interacts by changing
the value in the GUI or the patch alters the value the counterpart
is informed. So, parameters of the patch can be altered and values
can be displayed correctly. The IDL file is in XML format and
fully defined by the document type definition “idl.dtd” containing
all possible tags and their relations. The following listing shows
an example of a IDL file describing a graphical representation of a
Pd patch.

Listing 2: XML IDL example

<?xml version="1.0"7?>

<!DOCTYPE interface SYSTEM ”idl.dtd”>
<interface >

<author>Christopher Frauenberger </author>
<patch>Ambisonic 3D</patch>

<version >1.0</version >

<input name="oggstream”/>

<group name="Test” orientation="vertical”>

<onoff name="DSP on” bind="dspon” value="1"/>

<group name="Sliders”
orientation="horizontal”>
<vslider name="Volume” bind="volume”
min="0" max="100" value="37"/>
<vslider name="RoomSize” bind="size”
min="0"” max="100" value="21"/>
<group name="Source”
orientation="horizontal”>
<vslider name="X" bind="x"
min="0" max="20" value="3"/>
<hslider name="Y" bind="y”
min="0" max="20" value="6"/>
</group>
</group>
</group>
</interface >

The listing above results in the interface controls shown in fig-
ure 3. Necessarily, a IDL file must determine an input receiver.
This receiver will be fed with the information of the stream pa-
rameter provided in the object tag in order to connect to the ap-
propriate streaming server. The IDL DTD also allows grouping of
controls. The group tag provides a simple layout parameter deter-
mining whether the controls will be placed horizontally or verti-
cally. Each control must define a binding parameter determining
the receiver object in the Pd patch and a legal value range along
with the current value. This makes these IDL files also suitable for
saving the current settings into a user file. For example, if a user
have found his favourite mixer settings for a special music piece
he might save this settings in his private folder for later use.

6. CONCLUSION

The proposed system combines very recent technologies in the
field of signal processing and Internet tools to a powerful research
and lecturing tool. All components were designed to be as flex-
ible and generic as possible. The distributed architecture allows
different partners to collaborate for providing their clients a com-
prehensive library of electronic music.

The iARS plugin is an approach to introduce real-time audio ren-
dering to the world of web applications. The underlying Pd pro-
gram was chosen because of its performance and availability for a
wide range of platforms.

7. ACKNOWLEDGEMENTS

This project was kindly funded by the Austrian Federal Ministry
for Education, Science and Culture within the “New Media in
teaching at universities and polytechnics in Austria” project frame-
work.

8. REFERENCES

[1] D. Winer, “Xml-rpc specification,” Tech. Rep., Userland,
xml-rpc.com, 1999, http://www.xmlrpc.com.

[2] Ogg/Vorbis, Ogg Vorbis 1 format specifi-
cation: introduction and description, 2003,
http://www.xiph.org/ogg/vorbis/
doc/vorbis-spec—intro.html.

[3] Netscape, Netscape Geck Plug-in API, 2002,
http://devedge.netscape.com/.

[4] Miller Puckette, Pd Documentation, 2003,
http://crca.ucsd.edu/ msp/.

[5] Trolltech Inc., Ot Reference Manual, 2003,
http://doc.trolltech.com/3.1/.

DAFX-4

