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Introduction

Compact arrangements of independent loudspeakers
mounted on a spherical cabinet have been employed as
directivity controlled sound sources in research [1, 2, 3, 4].
As opposed to directivity control based on spherical har-
monics, the acoustic radiation modes (ARMs) have been
recently considered as an alternative basis to control the
sound field radiated by compact loudspeaker arrays [5].
Unlike the spherical harmonics, the ARMs always pre-
serve every degree of freedom of the multichannel source.
Specifically, regarding the sound power radiated into the
far field, these modes are found as eigenvectors of the pro-
grammable vibration pattern configuration of the source.
Hence, radiation modes can be seen as the natural basis
for controlling the vibration patterns of the source to cre-
ate achievable far field directivities. Associated with each
ARM, the eigenvalue indicates its radiation efficiency,
which is a useful information for far field magnitude nor-
malization. Nevertheless, regardless of normalization, it
would be convenient if the set of ARMs was frequency
independent. This contribution discusses the frequency
independence for different geometric layouts of spheri-
cal arrays. In particular, we focus on t-designs [6] and
extremal points for hyperinterpolation [7].

Radiated power

The spherical loudspeaker arrays are modeled here as a
spherical surface with L vibrating spherical caps at the
locations θ1, . . . ,θL, cf. [1]. The caps have the same size
and axisymmetric vibration pattern. Their radial veloc-
ities v = [v1, . . . , vL] are controlled to produce radiation
with variable directivity. The sound power radiated by
such arrays can be written in the L×L quadratic form [8]

Π ∝ v
H

B(ω)v, (1)

where the entries of B depend on the wave number k,
the array radius a, the vibration pattern of the individual
caps, and the angle enclosed by caps l and l′. They are
computed by the infinite sum

bll′ ∝
1

k2

∞∑

n=0

|An(ka)|2 Pn(< θl,θl′ >), (2)

where An is the axisymmetric wave spectrum of a cap
(see Ref. [9]), and Pn(·) are the Legendre polynomials.

Radiation Modes

Since B(ω) is a real symmetric matrix, its eigendecom-
position yields a set of real orthogonal eigenvectors for

the cap velocities, V (ω), which corresponds to positive
real eigenvalues of the radiated power, σ(ω); i.e.,

B(ω) = V (ω) diag{σ(ω)} V (ω)T, (3)

where the columns of V (ω) are the ARMs of the source,
and the entries of σ(ω) are proportional to the radiation
efficiencies associated to the eigenvectors.

A recent paper [8] has demonstrated that the ARMs of
the most common array configurations, those of the Pla-
tonic solids, do not depend on ω. This raises the question:
Do the ARMs of other layouts get frequency dependent?

Joint diagonalization. Consider a finite set
{B1,B2, . . . }, where Bi ≡ B(ωi) and ωi is a given fre-
quency in the operation range of the array. In general,
joint diagonalization of these matrices might not exist,
i.e., be only approximate. If it is exact, however, it is
equivalent to eigendecomposition at any ωi.

Simultaneous approximate diagonalization can be ob-
tained by minimizing the off-diagonal terms of V̂ Bi V̂

T

for all i. The algorithm in [10] does this using a uni-
tary optimization variable V̂ and maximizing the diag-
onal

∑
i |diag{V̂ Bi V̂

T}|2. The obtained diagonaliza-
tion is exact if the off-diagonal terms vanish for all i. In
this case, eigenvalues and diagonals sorted by magnitude
match exactly σ(ωi) ≡ σ̂(ωi) = diag{V̂ BiV̂

T}.

Clearly, in the case of exact joint diagonalization, the
ARMs V̂ are frequency independent, as is the case for
Platonic arrays. Otherwise, a discrepancy between diag-
onals σ̂(ωi) and eigenvalues σ(ωi) emerges. This can be
used to investigate the frequency behavior of the ARMs
for alternative spherical array layouts.

Alternative layout examples. Two spherical layout
families with strong mathematical features are proposed.

Spherical t-designs [6] are layouts providing the simplest
numerical integration rule on the sphere, which is exact
for polynomials of degree l ≤ t. They include the Pla-
tonic solids, as indicated in Table 1.

Extremal-points for hyperinterpolation [7] work with the
smallest number of sampling points for limited-order in-
terpolation on the sphere. Recently, a 16-driver spherical
array based on this layout has been presented [11].

Simulation Results

To study different layouts, 30 log-spaced frequency sam-
ples between 0.7 ≤ ka ≤ 15 were used for joint diago-
nalization with an accuracy of 10−6. Table 1 shows the

maximum deviation 10maxl,i | lg
σ̂l(ωi)
σl(ωi)

| [dB] for several

t-design and extremal points arrays up to L = 36.



sampling L maxσ
σ̂

[dB]

(t=2/extr.) tetrahedron* 4 0.00
(t=3) octahedron* 6 0.00
2-design 7 3.10
(t=3) hexahedron* 8 0.00
2-design 9 1.31
extremal* 9 0.37
3-design* 10 0.00
3-design 11 2.99
(t=5) icosahedron* 12 0.00
3-design 13 9.80
4-design 14 7.48
3-design 15 5.37
5-design 16 1.43
extremal 16 4.21
4-design 17 17.55
5-design 18 8.99
4-design 19 19.04
(t=5) dodecahedron* 20 0.00
4-design 21 9.67
5-design 22 11.98
5-design 23 19.19
3-design 24 7.09
7-design 24 2.99
5-design 25 8.82
extremal 25 13.37
6-design 26 24.82
5-design 27 26.58
6-design 28 11.16
6-design 29 17.40
7-design 30 22.40
6-design 31 24.51
7-design 32 15.61
6-design 33 20.97
7-design 34 14.55
6-design 35 13.58
8-design 36 8.47
extremal 36 18.73

Table 1: Joint diagonal / eigenvalue mismatch for various
arrays.

As expected, results reveal that ARMs of Platonic arrays
do not depend on frequency. Moreover, the 3-design with
L = 10 and the extremal-points array with L = 9 seem
to possess approximately frequency independent ARMs.
These arrays are marked with (*) in Table 1 and shown
in Fig. 1. However, for the remaining layouts, the ARMs
may depend significantly on frequency.

Conclusion

We have shown that compact spherical loudspeaker ar-
rays other than Platonic can be expected to have fre-
quency dependent ARMs. Nevertheless, constant ARMs
can be assumed for some arrangements with moderate
errors, which can be obtained through joint diagonaliza-
tion. Finally, this is a preliminary numerical study, so
that the discussion of practical and efficient ARM-based
radiation control is left open for future works.
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Figure 1: Configurations (*) with completely or nearly fre-
quency independent ARMs.
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