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With an appropriate control system, directivity pattern synthesis can be accomplished with spherical
loudspeaker arrays, e.g. in the shape of Platonic solids or spheres. The application of such devices for
the reproduction of natural or artificial directivity patterns poses a relatively young field of research
in computer music and acoustic measurements. Using directivity measurements with microphones, the
directivity patterns of the individual speakers on the array can be determined. Usually, the directivity of
the whole array may be regarded as a linear combination of these patterns. In order to gain control, the
measurement data of the linear system need to be inverted. Given L loudspeakers and M microphones,
this inversion yields the desired control system, an expensive LxM multiple-input-multiple-output
(MIMO) filter. We introduce discrete spherical harmonics transform and decoder matrices to reduce the
number of channels required for this control system, thus reducing the computational effort. However,
this step often leads to a sparse MIMO-system, in which many off-diagonal transfer functions vanish.
If applicable, the computation of the non-zero transfer functions only can be done at even much lower
cost. A case study for an icosahedral loudspeaker array is given, showing the properties of the sparse
MIMO-system.

1 Introduction

By now, several publications on spherical loudspeaker
arrays for the purpose of directional sound synthesis ex-
ist [2, 3, 4, 9], most of which having their focus on pro-
viding a more natural playback than single loudspeak-
ers. More recently, the works on directivity pattern syn-
thesis of natural sound sources address emerging con-
trol issues [5, 6, 7, 10, 11, 14, 15, 16, 18]. In general,
these control systems are quite demanding with respect
to computational effort in real-time, especially as the
resolution has to be sufficiently high at low frequencies.

In [17] a theoretical study has been presented show-
ing an efficient control system that de-couples the mo-
tion of acoustically coupled transducers in spherical loud-
speaker arrays. Under idealized circumstances the num-
ber of computations for an L-speaker array have been
reduced from O

(
L2
)

to O (L).
This paper applies this theoretical concept to a gen-

eral control task for spherical loudspeakers, using a) mi-
crophone array measurements of the individual speaker
directivities, and b) Laser-Doppler vibrometry measure-
ments of the transducer velocities.

2 Directivity Measurement

Using an array of microphones located at a certain con-
centrical sphere surrounding the spherical loudspeaker,
we are able to determine all transducer directivities,
i.e. transfer functions between loudspeakers and micro-
phones. The corresponding multiple-input-multiple-output
system (MIMO) is described as

p = G u. (1)

The matrix G linearly combines the loudspeaker in-
put voltages u to form the measured sound pressure
directivity pattern p. Note that the dependency on the
frequency variable ω has been omitted for better read-
ability, but the relation holds for the frequency domain
only. A control system (MIMO-ctl) optimizing for the
desired angular directivity pattern p ≈ pctl using the
pseudo-inverse G†

p = G G† pctl (2)

doesn’t seem practical. It yields big approximation er-
rors with unknown spatial error distribution. In the

Figure 1: Measurement setup for spherical loudspeaker sys-
tem identification with microphones. An electric turntable
faciliates sampling the complete spherical grid depicted on
the right.

following sections the real-valued spherical harmonics
(SH) shall be used as base set of angular directivity pat-
terns. They also enable radial beamforming as described
in [15].

2.1 Spherical Harmonics Transform

The concept of an angular band limit seems to be prac-
tical for directivity control, to ensure a rotation invari-
ant bounded resolution within the whole angular space.
Spherical harmonics expansions truncated at some or-
der N inherently support this concept [8]. Therefore, a
corresponding decomposition of the output directivity
pattern p is desirable. We define a matrix CN con-
taining the real-valued SHs Y m

n (θl) sampled at every
microphone in the measurement setup

CN =

⎛
⎜⎝Y1 (θ1) . . . Y(N+1)2 (θ1)

...
. . .

...
Y1 (θM) . . . Y(N+1)2 (θM)

⎞
⎟⎠ . (3)

To linearly index the SHs Ynnn (θl), we use the variable
nnn = n2 + n + m + 1 defined on the range 1 ≤ nnn ≤
(N + 1)2. The expansion into CN using the coefficients



ψN and the corresponding transform is

p
!= CN ψN =⇒ ψN = C†w

N p (4)

where C†w

N denotes the weighted least-squares pseudo-
inverse of CN using the weight vector w, cf. Sneeuw [1].
Ideally untruncated N ≤

√
M − 1 → ∞, the coefficients

ψN are called spherical wave spectrum of the sound pres-
sure. We define the left hand side transformed system
(MIMO-LSH) Eq. (1) as G

c

N := C†w

N G, hence

ψN = G
c

N u. (5)

Spherical Harmonics Control. Using a control sys-
tem (MIMO-LSH-ctl) for the transducer voltages, direct
control is obtained over the Nc-truncated spherical wave
spectrum

ψNc = G
c

Nc
G

c †
Nc

γNc , (6)

which is best fitted to the steering vector γNc

!= ψNc by
the pseudo-inverse ()†. The MIMO-LSH-ctl is exact if
(Nc + 1)2 ≤ L and the left-inverse is non-singular. Oth-
erwise, the right-inverse gives the best approximation.
The Nfft-point block-filter implementation of the sys-
tem requires Nfft × L × (Nc + 1)2 multiplications. The
following section presents a smaller but fully equivalent
alternative.

3 Spherical Harmonics Subspace

Following the notion from above, the loudspeaker ar-
ray signals are derived from spherical harmonics (SH)
signals, using the expansion coefficients γNc . This step
can be separated from the control task (see also Ap-
pendix A). We define DN as the SHs sampled at the
array loudspeakers (similar to CN at the microphones)

yN (θ) =
[
Y1 (θ) , . . . , Y(N+1)2 (θ)

]T
, (7)

DN = [yN (θ1) , . . . ,yN (θL)]T (8)

The decoding of the SH domain signals to the loud-
speaker signals is expressed as transform of Eq. (1) from
the right, defining G

c

Nc
:= G D†

Nc
. Transforming both,

right and left side, we define G
o

N,Nc
:= C†w

N G D†
Nc

.

Consequently, G
o −1
Nc

:=
(
C†w

Nc
G D†

Nc

)−1

achieves exact
angular Nc-truncated SH directivity control (MIMO-
SH-ctl)

ψN = G
o

N,Nc
G

o −1
Nc

γNc , (9)

⇒ ψNc ≡ γNc .

The dimensions of this alternative approach are similar
as above Nfft × (Nc + 1)2 × (Nc + 1)2, but it has been
theoretically shown in [17] that in this SH domain, reg-
ular spherical loudspeaker layouts nearly yield diagonal
MIMO, i.e. single-input-single-output, control systems.
As the spherical harmonics are eigenfunctions in the
continuous angular space, they approximate the eigen-
vectors of the discrete angular space of the array. This

is particularly true if the array layout provides near or-
thogonal sampling of the SHs. Consequently, the trans-
form nearly diagonalizes the MIMO-SH-ctl. The exam-
ples in the next section demonstrate the practical rele-
vance of this connection.
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Figure 2: Block diagram of a spherical harmonics subspace
directivity control (MIMO-SH-ctl).

Error Evaluation. To evaluate the system perfor-
mance, spatial aliasing, i.e. all spherical harmonics N →
∞, needs to be taken into account. An ideal control
system equals the identity matrix for n ≤ Nc, and zero
for n > Nc. The system error e (γNc) = E γNc depends
on the steering vector and is defined as deviation from
this idealized behavior

E =

[
G

o

Nc

G
o

>Nc,Nc

]
G

o −1
Nc

−
[

INc

0>Nc,Nc

]
=

[
0Nc

G
o

>Nc,Nc
G

o −1
Nc

]
.

(10)

Following a similar approach as in [7], the minimum and
maximum power of the error result from an eigendecom-
position of the squared error, see also [18]

‖e (γNc)‖2 = γH
Nc

EHE γNc , (11)

EHE = Q diag {σe}2
QH,

⇒ argmin{σe}2 ≤ ‖e (γNc)‖2

‖γNc‖2 ≤ argmax{σe}2,

wherein ()H denotes hermitian transposition. As all
eigenvectors in Q are normalized, the magnitude of the
squared error is determined by the eigenvalues only. The
following sections apply the hereby defined error bounds
and an average ‖σe‖2

(Nc+1)2 to characterize the system per-
formance.

4 Case Study: Icosahedral Loud-
speaker

The IEM icosahedral array has a radius of ro = 0.28m
and its 20 loudspeakers are built into an icosahedron
with a common interior, loosely filled with damping
wool.
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Figure 3: Cross-section through the MIMO-control systems for the IEM loudspeaker showing magnitudes at one frequency. The
simulated systems are compared to measurement based control. The MIMO-SH-ctl becomes sparse in both cases.

4.1 Microphone Array Measurements

The measurement setup is depicted in Fig. 1 and uses a
10◦-spaced semicircular microphone array with 5◦ offset
from ϑ = 0. The transfer functions in G were measured
in 10◦ azimuthal steps using an electric turntable. With
the quadrature or surface fraction weights w (cf. [1], [18])
for weighted least-squares inversion, the transfer func-
tions were transformed from the left into G

c

17.
Furthermore, 20 filters have been applied to equalize

all active on-axis loudspeaker responses to each other.
This equalization step seems to be crucial for the sparse-
ness of the MIMO-SH-ctl (see Figs. 2 and 3(b)).

From G
c

17, the MIMO-LSH-ctl G
c †
3 and MIMO-SH-

ctl G
o −1
3 were computed according the descriptions from

above. In addition, analytic versions of the control sys-
tems were calculated from the model in Appendix A.

Frequency Slice and Frequency Response. To il-
lustrate the advantage of the MIMO-SH-ctl over the
MIMO-LSH-ctl, a cross-section through the frequency-
domain filter-matrix is depicted at a frequency of 689Hz.
Figs. 3(a) and 3(b) compare the the analytic control
systems to the corresponding systems based on mea-
surements. It is nice to see that in both, theoretical
and practical, results the MIMO-SH-ctl becomes sparse.
However, the reason for the obvious deviation from the
theoretical results is not quite clear yet (non-spherical
geometry of the icosahedron; inhomogeneous filling and
cabling in the interior; losses in the damping wool; slight
offsets in the setup). The frequency responses of the con-
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Figure 4: Measured MIMO-SH-ctl magnitude responses
(thin, gray) from the IEM-loudspeaker in comparison to an-
alytic responses (dashed, colored).

trol system G
o −1
3 in magnitude are depicted in Fig. 4.

The dashed colored lines show the theoretical results;
also here, the frequency responses from the measured
data system (thin gray lines) deviate quite obviously
from their analytical counterparts.

Making it Sparse again and Error Evaluation.
In order to re-establish a sparse structure in the MIMO-
SH-ctl based on measurements, a mask needs to be found,
omitting irrelevant transfer paths. Fig. 3(c) shows a se-
lection of 46 important transfer functions. The error
evaluation according to Eq. (11) in Fig. 5 shows a com-
parison between the original and “sparsified” MIMO-
SH-ctl. Even after a reduction from 256 to 46 transfer
functions good results are achievable.

Figure 5: Synthesis errors of the IEM loudspeaker for N=3
comparing the full and the sparsified MIMO-SH-ctl. Results
of the analytic model are given as reference.

4.2 Laser-Doppler Vibrometry Measure-
ments

Alternatively to the acoustic measurements, the vibra-
tions of the membranes can be captured with a laser
vibrometer [12, 13]. This is done with a much smaller
measurement setup which is more robust to acoustic re-
flections. However, laser vibrometry measurements only
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Figure 6: Cross-section through the velocity MIMO-control systems for the IEM loudspeaker showing magnitudes at one
frequency. The simulated systems are compared to laser Doppler vibrometry measurement based control.

describe the surface velocity, but not the acoustic dis-
persion. A spherical cap model (see Appendix A) was
used to obtain sensible descriptions.
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Figure 7: Measured velocity MIMO-SH-ctl magnitude re-
sponses (thin, gray) from the IEM-loudspeaker in compari-
son to analytic responses (dashed, colored).

The description of the 20×20 velocity MIMO-system
T and its control is similar to the microphone array
scenario

v = T u = T T−1 vctl. (12)

The Nc-truncated spherical wave spectrum of the sur-
face velocity, using the spherical cap coefficients A, cf. Ap-
pendix A, and the decoder A†

Nc
yields

ΥNc = ANc T A†
Nc︸ ︷︷ ︸

T
o

Nc

u = T
o

Nc
T
o −1

Nc
γNc . (13)

Fig. 6 compares a cross-section of the analytic con-
trol system according to Appendix A with the laser vi-
bromentry based system. The measured frequency re-
sponses seem to match their analytic counterparts much
better than in the case of microphone array measure-
ments.

5 Conclusion

We have shown that control systems for angular beam-
pattern synthesis can be made more efficient, at least
for regular layouts of spherical loudspeaker arrays. The
improvement, however, is not quite as good as could be
expected from previous analytic simulations and a rea-
sonable explanation for this has to be found. Neverthe-
less, the computational effort can be decreased from 256
to 20+46 block-filters in case of the IEM loudspeaker.
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A Analytic Model

The appendix provides a brief description completing
the electro-acoustic model that has been previously be-
gun in [14]. The analytic model is used as a reference to
compare against measured data. Essentially, the acous-
tical model has been given as a solid spherical shell with
radially vibrating caps. The reader is referred to the pa-
per [14] for a complete description. Let us resume at the
description of the impact forces fac of the acoustic fields
on the loudspeaker membranes vibrating at the veloci-
ties v

fac = Zac · v, (14)

Zac = iρ0c AT
NdiagSH

{
cin

c

jn (kinrin)
j′n (kinrin)

+
hn (kro)
h′

n (kro)

}
AN

(15)

AN =
[
SHT

{
a(l) (θ)

}]
l=1...L

, (16)

wherein a(l) is the aperture function defined to equal one
at the coordinates θ = (ϕ, θ) of the lth membrane and
zero elsewhere. Let the matrix AN contain the spher-
ical harmonics coefficients vectors of all these aperture

functions. ()T denotes transposition, rin and ro describe
the inner and outer radius of the shell model, and kin,
k, cin, and c the wave numbers and sonic speeds in-
side and outside the shell. jn and hn are the spherical
Bessel and Hankel functions, ρ0 is the air density, and i
the imaginary constant
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Figure 8: Complete electro-acoustical model of a spherical
loudspeaker.

For the complete electro-mechanical model of the
loudspeaker, the block diagram in Fig. 8 shows the rela-
tion between electrical voltages u and currents i at the
amplifier and the mechanical quantities f = fac + fme

and v. The parameters correspond to electrical zel, me-
chanical zme, and acoustical Zac impedances, as well as
the transduction (gyration) constants β. The relation
between voltages u and membrane velocities v yields

v =
[
ZelB−1 (Zac + Zme) + B

]−1︸ ︷︷ ︸
T

u, (17)

with the diagonal matrices Zel = diag
{
zel

}
, Zme =

diag {zme}, and B = diag {β}.
Using the radial propagation terms, the spherical

wave-spectrum of the sound pressure results in

ψ = H · AN · T︸ ︷︷ ︸
G
c

·u, (18)

H = iρ0c diagSH

{
hn (kr)
h′

n (kro)

}
(19)

Eqs. (17) and (18) have been used to show the deviation
of the practical results from the analytic model.


