Freer Than Max - porting FTM to Pure Data

IOhannes m ZMOLNIG, Thomas MUSIL and Winfried RITSCH
Institute of Electronic Music and Acoustics
University of Music and Dramatic Arts
Graz, Austria,
{zmoelnig, musil, ritsch }@Qiem.at

Norbert SCHNELL
Real-Time Musical Interaction Group
IRCAM — Centre Pompidou
Paris, France
norbert.schnellQircam.fr

Abstract

FTM is an environment that allows the processing of
complex data structures such as matrices, sequences,
dictionaries, break point functions, tuples and what-
ever might seem helpful for the processing of mu-
sic, sound and motion capture data within graphical
computer music systems. While FTM itself is pub-
lished under a free license (LGPL), until recently the
only supported host system has been Max/MSP, a
commercial graphical programming environment for
Mac OS X and Win32.

In this paper we present a port of FTM to Pure
Data, Max’s free sibling that is among others avail-
able for Mac OS X, Win32, FreeBSD and Linux.

Keywords
Pure Data, complex data, Max/MSP, porting

1 Introduction

Graphical computer music languages such as
Pure Data (Pd) provide possibilities to handle
musical signal processing in an intuitive way.
Due to the used data-flow metaphor, there is
usually a focus on the “signal processing” side
rather than the handling of more “musical” data
structures. As a matter of fact, few graphi-
cal data-flow languages provide possibilities to
handle data types that are more complex than
simple lists of values (like numbers, or sym-
bols/strings) supporting applications such as
content based audio processing and algorithmic
composition.

The library FTM!, developed by the Real-
Time Musical Interaction Group at IRCAM?,
tackles these problems as a framework that pro-
vides efficient access to data types for the rep-
resentation of sound, gesture and music, such
as matrices, time-tagged sequences, break point
functions or dictionaries [1].

"http://ftm.ircam.fr
*http://imtr.ircam.fr

While providing a set of modules that allow
direct access to these data types from within a
data-flow language, FTM also provides a frame-
work to implement operator modules that have
a direct and efficient access to the data and can
provide high-level access to the FTM data struc-
tures [2; 3.

Though published under an Open Source li-
cense, until recently FTM was only available as
a library for Max/MSP [4], a commercial data-
flow language for Mac OS X and Win32. How-
ever, F'TM has been initially developed as an off-
spring of jMaz [5], another Open Source project
implementing a Max-like data-flow language.

1.1 Some Alternatives for Handling
Complex Data

FTM is not the first framework that provides ac-
cess to and manipulation of complex data struc-
tures within a graphical computer music lan-
guage. Pd already provides inbuilt graphical
data structures 6] including both low and high
level access to complex data sets on the patch
level. Their main drawback is their current
inefficient implementation that prevents from
its application for real-time processing of larger
amounts of complex data. Additionally there
are caveats in the persistency of these data
structures: while persistency is built into Pd, it
is currently limited to a rather low (something
around 400) entries per field, which makes it
suboptimal for handling larger data-sets such as
musical scores or audio analysis data sets.

A more optimised approach similar to FTM
is the PDContainer library by Georg Holzmann
[7]. This library provides a set of external mod-
ules that expose the C++-Standard Template
Library, thus allowing to work with the usual
complex data types in an efficient way.

2 The Framework

FTM itself consists of a dynamic library FTMIib
and a small set of external modules that expose
this library to a real-time host environment such
as Pd or Max/MSP.

As can be seen in fig.1, only a small portion
of the FTM implementation actually depends on
the real-time host environment.

The platform-dependent parts of the FTM ar-
chitecture are isolated into two APIs:

¢ FTMEXT (FTM external interface): Uni-
fied C-API for the implementation of exter-
nal modules hiding the native API of the
host environment.

e FTMRTE (FTM real-time environment):
Interface to native elementary data struc-
tures (atoms) and services of the host envi-
ronment such as error messages, dialogues
and data persistence mechanisms.

externals, Gabor, MnM, Suivi, FTM JavaScript

FTMhb Collc additional
ftmext_ (incl. FTS) libraries
external
interface femrte_ er:ol_gk

rt. env. interface S TNT
libsdif MatMTL
libsndfile SpiderMonkey
Max/MSP or PureData API ete

libc & Darwin or WIN32 or Linux

Figure 1: Overview of the FTM architecture

While the rest of FTM is implemented in
a generic, platform-independent way, the FT-
MEXT and FTMRTE APIs had to be re-
implemented for Pd based on the Max/MSP ver-
sion.

2.1 The FTMEXT API

The FTMEXT API has been finalised in par-
allel to the FTM Pd porting. The API repre-
sents a simplified version of the external APIs
of of Max/MSP and Pd functionalities and can
be seen as their “greatest common divider”. It
has been designed also regarding future imple-
mentations for JavaScript, VST or similar host
environments.

Since most of FITMEXT has been imple-
mented using preprocessor macros, it does not

provide binary compatibility. In consequence,
plugins compiled for a certain real-time envi-
ronment will need to be recompiled for every
other real-time environment (even if both envi-
ronments were running on the same operating
system).

Furthermore, the macro approach forces all
externals to be recompiled whenever the imple-
mentation of the FTMEXT API changes.

These two issues strongly suggest to wrap the
FTMEXT interface into a dynamic library and
minimise the use of macros. In theory this could
provide binary-compatible externals for various
platforms (compile once, run on Pd and Max).

Whether a library-version of the compatibility
wrappers is markedly less efficient than a macro-
based implementation remains to be evaluated.

3 The Core Modules

Since FTM extends the elementary data types
handled by its host environment, it has to pro-
vide a set of modules that can handle newly in-
troduced values and objects. The standard dis-
tribution FTM includes a set of modules giving
access to the libraries data structures and basic
functionalities.

3.1 Generic Core Modules

Most of the FTM external modules use a
restricted set of functionalities provided by
the host environment and can be imple-
mented as FTMEXT externals. However, some
of these generic modules have actually been
implemented directly using functions of the
Max/MSP externals API. These modules have
been adapted or re-implemented to use the FT-
MEXT API in the framework of the FTM Pd
porting. As a consequence FTM now has a com-
plete set of platform-independent external mod-
ules that also constitute an excellent test-bed for
the FTMEXT framework since it covers most of
the functionalities of the FTMEXT API.
Moreover this work has contributed to the
portability of FTM and simplifies the eventual
port of FTM to further host environments.

3.2 Platform Dependent Core Modules

A few objects cannot be implemented in a
platform-independent way via FTMEXT, as
they rely heavily on features of the hosting real-
time environment.

The most notable of these are ftm.object the
ftm.mess that rely on the host environments
graphical capabilities. The ftm.object mod-
ule provides the possibility to statically instan-

tiate FTM objects and to associate them with
names. The module ftm.mess provides an ex-
tended message box that also allows for access-
ing FTM data structures and the evaluation of
functions and infix expressions. In order to pro-
vide a complete set of modules for the first ver-
sion of FTM for Pd, two platform-independent
alternative modules, ftm.o and ftm.m, have
been developed that are entirely based on the
FTMEXT APIL

4 Some More Objects: Going GUI

FTM does not only provide programmatic ac-
cess to it’s complex data types, but also a set of
objects that allow to visually interact with the
data.

The visual interaction objects range from sim-
ple spreadsheet like editors for two-dimensional
numeric matrices to complex score editors that
handle several sets of (in)dependent data se-
quenced in time.

Originally these graphical objects had been
implemented in Java using the mxj Java-API for
Max/MSP. However, FTM is currently moving
away from using Java as a GUI-toolkit in favour
of the cross-platform C-+-+-toolkit “juce”?.

The separation of Pd-core and it’s tcl/tk-
based GUI keeps the integration of 3rd party
GUI toolkits from being straight forward.

Editors can require huge amounts of data
which will block bottlenecks such as the connec-
tion between Pd and Pd-gui, when moving the
data from one instance to the other. One solu-
tion to this problem is to use shared-memory for
moving the data.

A more naive approach that is used here, is to
move part of the graphic-rendering from the Pd
GUI into the main application. For obvious rea-
sons, the editor-interfaces are therefore not inte-
grated in the patch-windows but reside in their
own windows (which are technically windows of
the Pd core process rather than the Pd-gui pro-
cess)

5 Conclusions

The port of FTM to Pd brings yet another
framework for handling complex data types to
Pd. While this my seem needless at first glance,
FTM brings the bonus of interoperability with
a widely used commercial system that otherwise
lacks such complex data types.

Due to the level of abstraction of the host-
ing real-time environment within the FTM-

3http://www.rawmaterialsoftware.com/juce/

framework, porting of the basic functionality
was rather painless.

The FTMEXT API provides a cross-platform
API to write plugins for graphical computer mu-
sic languages in a simple language like “C”.

Having FTM available on a free platform will
hopefully trigger the development and porting of
higher-level data-processing libraries like Gabor
or MnM.

6 Acknowledgements

Our thanks go to the IRCAM Real-Time Mu-
sical Interaction Group. Extra thanks to Tom-
maso Bianco, who did the first steps in porting
FTM to Pd and to Pierre Duquesne who laid
the first stones.

References

[1] Norbert Schnell, Riccardo Borghesi, Diemo
Schwarz, Frederic Bevilacqua, and Remy
Miiller. Ftm — complex data structures for
max. In Proc. of the ICMC, Barcelona, 2005.
ICMA.

[2] Norbert Schnell and Diemo Schwarz. Ga-
bor, multi-representation real-time analy-
sis/synthesis. In COST-G6 Conference on
Digital Audio Effects (DAFz), pages 122—
126, Madrid, 2005.

[3] Frederic Bevilacqua, Remy Miiller, and Nor-
bert Schnell. Mnm: a max/msp mapping
toolbox. In Proc. of New Interfaces for Mu-
sical Erpression, Vancouver, 2005.

[4] Miller S Puckette. Combining event and sig-
nal processing in the max graphical pro-
gramming environment. Computer Music

Journal, 15(3):68-77, 1991.

[5] Francois Dechelle, Riccardo Borghesi, Mau-
rizio De Cecco, Enzo Maggi, Butch Rovan,
and Norbert Schnell. jmax: a new java-based
editing and control system for real-time mu-
sical applications. In Proceedings of the 1998
International Computer Music Conference,
San Francisco, 1998. International Computer
Music Association.

[6] Miller Smith Puckette. Using pd as a score
language. In Proceedings of the ICMC, pages
184-187, Gothenburg, 2002. ICMA.

[7] Georg Holzmann. Pdcontainer library for
pd. cvs://pure-data.cvs.sourceforge.
net/cvsroot/pure-data/externals/grh/
PD% container/, 2004.

