
Freer Than Max - porting FTM to Pure Data

IOhannes m ZMÖLNIG, Thomas MUSIL and Winfried RITSCH
Institute of Electronic Music and Acoustics
University of Music and Dramatic Arts

Graz, Austria,
{zmoelnig, musil, ritsch}@iem.at

Norbert SCHNELL
Real-Time Musical Interaction Group

IRCAM � Centre Pompidou
Paris, France

norbert.schnell@ircam.fr

Abstract
FTM is an environment that allows the processing of
complex data structures such as matrices, sequences,
dictionaries, break point functions, tuples and what-
ever might seem helpful for the processing of mu-
sic, sound and motion capture data within graphical
computer music systems. While FTM itself is pub-
lished under a free license (LGPL), until recently the
only supported host system has been Max/MSP, a
commercial graphical programming environment for
Mac OS X and Win32.

In this paper we present a port of FTM to Pure
Data, Max's free sibling that is among others avail-
able for Mac OS X, Win32, FreeBSD and Linux.

Keywords
Pure Data, complex data, Max/MSP, porting

1 Introduction
Graphical computer music languages such as
Pure Data (Pd) provide possibilities to handle
musical signal processing in an intuitive way.
Due to the used data-�ow metaphor, there is
usually a focus on the �signal processing� side
rather than the handling of more �musical� data
structures. As a matter of fact, few graphi-
cal data-�ow languages provide possibilities to
handle data types that are more complex than
simple lists of values (like numbers, or sym-
bols/strings) supporting applications such as
content based audio processing and algorithmic
composition.
The library FTM1, developed by the Real-

Time Musical Interaction Group at IRCAM2,
tackles these problems as a framework that pro-
vides e�cient access to data types for the rep-
resentation of sound, gesture and music, such
as matrices, time-tagged sequences, break point
functions or dictionaries [1].

1http://ftm.ircam.fr
2http://imtr.ircam.fr

While providing a set of modules that allow
direct access to these data types from within a
data-�ow language, FTM also provides a frame-
work to implement operator modules that have
a direct and e�cient access to the data and can
provide high-level access to the FTM data struc-
tures [2; 3].

Though published under an Open Source li-
cense, until recently FTM was only available as
a library for Max/MSP [4], a commercial data-
�ow language for Mac OS X and Win32. How-
ever, FTM has been initially developed as an o�-
spring of jMax [5], another Open Source project
implementing a Max-like data-�ow language.

1.1 Some Alternatives for Handling
Complex Data

FTM is not the �rst framework that provides ac-
cess to and manipulation of complex data struc-
tures within a graphical computer music lan-
guage. Pd already provides inbuilt graphical
data structures [6] including both low and high
level access to complex data sets on the patch
level. Their main drawback is their current
ine�cient implementation that prevents from
its application for real-time processing of larger
amounts of complex data. Additionally there
are caveats in the persistency of these data
structures: while persistency is built into Pd, it
is currently limited to a rather low (something
around 400) entries per �eld, which makes it
suboptimal for handling larger data-sets such as
musical scores or audio analysis data sets.

A more optimised approach similar to FTM
is the PDContainer library by Georg Holzmann
[7]. This library provides a set of external mod-
ules that expose the C++-Standard Template
Library, thus allowing to work with the usual
complex data types in an e�cient way.



2 The Framework

FTM itself consists of a dynamic library FTMlib
and a small set of external modules that expose
this library to a real-time host environment such
as Pd or Max/MSP.
As can be seen in �g.1, only a small portion

of the FTM implementation actually depends on
the real-time host environment.
The platform-dependent parts of the FTM ar-

chitecture are isolated into two APIs:

• FTMEXT (FTM external interface): Uni-
�ed C-API for the implementation of exter-
nal modules hiding the native API of the
host environment.

• FTMRTE (FTM real-time environment):
Interface to native elementary data struc-
tures (atoms) and services of the host envi-
ronment such as error messages, dialogues
and data persistence mechanisms.

FTMlib core
(incl. FTS)

libc & Darwin or WIN32 or Linux

externals, Gabor, MnM, Suivi, FTM JavaScript

FTM architecture

ftmrte_
rt. env. interface

libsdif
libsndfile

ftmext_
external 
interface

additional 
libraries

vecLib
LAPACK 

TNT
MatMTL

SpiderMonkey
etc.Max/MSP or PureData API

Figure 1: Overview of the FTM architecture

While the rest of FTM is implemented in
a generic, platform-independent way, the FT-
MEXT and FTMRTE APIs had to be re-
implemented for Pd based on the Max/MSP ver-
sion.

2.1 The FTMEXT API

The FTMEXT API has been �nalised in par-
allel to the FTM Pd porting. The API repre-
sents a simpli�ed version of the external APIs
of of Max/MSP and Pd functionalities and can
be seen as their �greatest common divider�. It
has been designed also regarding future imple-
mentations for JavaScript, VST or similar host
environments.
Since most of FTMEXT has been imple-

mented using preprocessor macros, it does not

provide binary compatibility. In consequence,
plugins compiled for a certain real-time envi-
ronment will need to be recompiled for every
other real-time environment (even if both envi-
ronments were running on the same operating
system).
Furthermore, the macro approach forces all

externals to be recompiled whenever the imple-
mentation of the FTMEXT API changes.
These two issues strongly suggest to wrap the

FTMEXT interface into a dynamic library and
minimise the use of macros. In theory this could
provide binary-compatible externals for various
platforms (compile once, run on Pd and Max).
Whether a library-version of the compatibility

wrappers is markedly less e�cient than a macro-
based implementation remains to be evaluated.

3 The Core Modules
Since FTM extends the elementary data types
handled by its host environment, it has to pro-
vide a set of modules that can handle newly in-
troduced values and objects. The standard dis-
tribution FTM includes a set of modules giving
access to the libraries data structures and basic
functionalities.

3.1 Generic Core Modules

Most of the FTM external modules use a
restricted set of functionalities provided by
the host environment and can be imple-
mented as FTMEXT externals. However, some
of these generic modules have actually been
implemented directly using functions of the
Max/MSP externals API. These modules have
been adapted or re-implemented to use the FT-
MEXT API in the framework of the FTM Pd
porting. As a consequence FTM now has a com-
plete set of platform-independent external mod-
ules that also constitute an excellent test-bed for
the FTMEXT framework since it covers most of
the functionalities of the FTMEXT API.
Moreover this work has contributed to the

portability of FTM and simpli�es the eventual
port of FTM to further host environments.

3.2 Platform Dependent Core Modules

A few objects cannot be implemented in a
platform-independent way via FTMEXT, as
they rely heavily on features of the hosting real-
time environment.
The most notable of these are ftm.object the

ftm.mess that rely on the host environments
graphical capabilities. The ftm.object mod-
ule provides the possibility to statically instan-



tiate FTM objects and to associate them with
names. The module ftm.mess provides an ex-
tended message box that also allows for access-
ing FTM data structures and the evaluation of
functions and in�x expressions. In order to pro-
vide a complete set of modules for the �rst ver-
sion of FTM for Pd, two platform-independent
alternative modules, ftm.o and ftm.m, have
been developed that are entirely based on the
FTMEXT API.

4 Some More Objects: Going GUI
FTM does not only provide programmatic ac-
cess to it's complex data types, but also a set of
objects that allow to visually interact with the
data.
The visual interaction objects range from sim-

ple spreadsheet like editors for two-dimensional
numeric matrices to complex score editors that
handle several sets of (in)dependent data se-
quenced in time.
Originally these graphical objects had been

implemented in Java using the mxj Java-API for
Max/MSP. However, FTM is currently moving
away from using Java as a GUI-toolkit in favour
of the cross-platform C++-toolkit �juce�3.
The separation of Pd-core and it's tcl/tk-

based GUI keeps the integration of 3rd party
GUI toolkits from being straight forward.
Editors can require huge amounts of data

which will block bottlenecks such as the connec-
tion between Pd and Pd-gui, when moving the
data from one instance to the other. One solu-
tion to this problem is to use shared-memory for
moving the data.
A more naive approach that is used here, is to

move part of the graphic-rendering from the Pd
GUI into the main application. For obvious rea-
sons, the editor-interfaces are therefore not inte-
grated in the patch-windows but reside in their
own windows (which are technically windows of
the Pd core process rather than the Pd-gui pro-
cess)

5 Conclusions
The port of FTM to Pd brings yet another
framework for handling complex data types to
Pd. While this my seem needless at �rst glance,
FTM brings the bonus of interoperability with
a widely used commercial system that otherwise
lacks such complex data types.
Due to the level of abstraction of the host-

ing real-time environment within the FTM-

3http://www.rawmaterialsoftware.com/juce/

framework, porting of the basic functionality
was rather painless.
The FTMEXT API provides a cross-platform

API to write plugins for graphical computer mu-
sic languages in a simple language like �C�.
Having FTM available on a free platform will

hopefully trigger the development and porting of
higher-level data-processing libraries like Gabor
or MnM.

6 Acknowledgements
Our thanks go to the IRCAM Real-Time Mu-
sical Interaction Group. Extra thanks to Tom-
maso Bianco, who did the �rst steps in porting
FTM to Pd and to Pierre Duquesne who laid
the �rst stones.

References
[1] Norbert Schnell, Riccardo Borghesi, Diemo

Schwarz, Frederic Bevilacqua, and Remy
Müller. Ftm � complex data structures for
max. In Proc. of the ICMC, Barcelona, 2005.
ICMA.

[2] Norbert Schnell and Diemo Schwarz. Ga-
bor, multi-representation real-time analy-
sis/synthesis. In COST-G6 Conference on
Digital Audio E�ects (DAFx), pages 122�
126, Madrid, 2005.

[3] Frederic Bevilacqua, Remy Müller, and Nor-
bert Schnell. Mnm: a max/msp mapping
toolbox. In Proc. of New Interfaces for Mu-
sical Expression, Vancouver, 2005.

[4] Miller S Puckette. Combining event and sig-
nal processing in the max graphical pro-
gramming environment. Computer Music
Journal, 15(3):68�77, 1991.

[5] Francois Dechelle, Riccardo Borghesi, Mau-
rizio De Cecco, Enzo Maggi, Butch Rovan,
and Norbert Schnell. jmax: a new java-based
editing and control system for real-time mu-
sical applications. In Proceedings of the 1998
International Computer Music Conference,
San Francisco, 1998. International Computer
Music Association.

[6] Miller Smith Puckette. Using pd as a score
language. In Proceedings of the ICMC, pages
184�187, Gothenburg, 2002. ICMA.

[7] Georg Holzmann. Pdcontainer library for
pd. cvs://pure-data.cvs.sourceforge.
net/cvsroot/pure-data/externals/grh/
PD% container/, 2004.


