
Internet Archive of Electronic Music IAEM

internet Audio Rendering System iARS

Christopher Frauenberger1 and Winfried Ritsch1

Institute of Electronic Music and Acoustics,
University of Music and Dramatic Arts Graz

Inffeldgasse 10/3, 8010 Graz, Austria
{frauenberger,ritsch}@iem.at

http://iem.at

Abstract. The Internet Archive for Electronic Music (IAEM) is in-
tended to be a platform to access an extensive and distributed archive
of electronic music. It combines collaborative tools, real time signal pro-
cessing on the client side and the content of the archive with the concept
of learning sequences to a powerful teaching, research and publishing
tool. The internet Audio Rendering System (iARS) refers to a client
browser extension which is part of the IAEM system. It extends a web-
browser with a flexible real time audio processing capability supporting
multi-channel processing. This enables users of the system to perceive
multi-track recordings in their correct acoustical context. Through its
built in user interface iARS is capable of presenting mixing devices and
graphical scenes creating interactive virtual environments. These envi-
ronments may be used embedded in learning sequences in teaching or
for experimenting with new music algorithms.

1 Introduction

The IAEM project is intended to present an extensive amount of digitised music
following a new approach. It extends the capabilities of an ordinary electronic
library with a collaboration platform and a audio rendering machine in order to
make it a Internet based multi-media information source for students, lectures
and other researchers.

There are many fields of applications possible for the system proposed. Be-
cause of the flexible design of the audio rendering machine it is possible to
introduce real-time signal processing with user-defined algorithms to web based
applications. Through the multi-channel streaming capability multi-track record-
ings can be received in their correct historical and acoustical context. Additional
graphical scene rendering allows to create virtual concert situations with an in-
teractive mixing device.

The distributed architecture of the content databases allows the integration
of electronic archives from different attending institution. The partners share
the common IAEM portal to access the data, but the databases are located at
the institutions. This is a very scalable approach because the effort to migrate



and to maintain the data is not centralised at the operator of the IAEM portal.
It also splits the efforts for hardware and bandwidth between the partners.

The IAEM system is also intended to be a publishing platform for the users. It
allows to publish music pieces as well as algorithms for the audio rendering. It is
hoped that the system will serve as a vital platform for many people contributing
to the content.

Offering music for listening in the Internet must consider legal issues to guar-
antee the legal certainty. The operator of each content database is responsible
for the content he provides. He must be authorised for digital copying the source
and publishing it for a certain user group. The restrictive authentication mecha-
nism in the IAEM system allows to set up different access rights for various user
groups.

2 Architecture

The architecture of the IAEM system is a classical server-client approach with
distributed databases as back-end data source. But there is a significant dif-
ference: clients may also connect to the content databases directly. Figure 1
illustrates the approach.

Content
Databases

Browser + iARS plugin

direct Audio streaming (mp3,ogg/vorbis)

IAEM Portal

Clients

Fig. 1. Basic structure of the IAEM including client terminals

The core is the IAEM portal server which provides all collaboration tools
and a content management system. This portal may connect to a list of content
databases where the music pieces are stored along with some additional meta-
data as usual in common music libraries (composer, artists etc). The portal can
process search-queries on the data in order to offer it to the user via the web
interface. The user can browse through the information, attend to discussions
or select a music piece and a audio rendering algorithm for listening. If the user
decided to receive a piece of music, the iARS browser plugin is started at his or
her browser. It loads the chosen algorithm and connects to the content database



to receive the requested music piece as an audio stream. The plugin also provides
a graphical user interface in the browser window. The GUI contains controls the
behaviour of the audio rendering algorithm online (means during operation).

The direct connection between the client and the content database decreases
the hardware requirements for the IAEM portal. If every stream connection
would be routed via the portal, the available andwidth would restrict the number
of connections.

3 System Requirements

Due to the distributed architecture illustrated above the requirements for the
single components of the system are not very high. The content databases need
to have sufficient storage space for the archive intended to hold. The Internet
connection needed depends on how many users are expected (and authorised) to
request music pieces from the database. However, a 100Mbit/sec (T1) connection
usually available at institutions willing to share their archive is enough to serve
a reasonable number of clients (theoretically up to 800 for 128kbps streams).

The portal runs a content management system including a database back-
end. For this component too the requirements are not very high. A customary
server provides usually sufficient performance. The prototype built at the IEM
Graz is running a 2MHz Pentium XEON with a 4.6GB RAID system.

The iARS plugin is based on the Pure Data programme and requires a run-
ning installation on the clients PC. Fortunately Pure Data supports a wide range
of platforms like Windows or Linux. iARS is written for Browsers supporting the
Netscape Gecko Plugin API [1] (Netscape 4.7, 6x, 7x, Mozilla 1x).

4 The Content Databases

An IAEM content database system consists of four main components. The
database itself is storing references to the audio data in the file-system and
the additional meta-data. This database can be queried by the IAEM portal
through a standard SQL interface. The control block is also communicating
with the IAEM portal. It is responsible for carrying out commands received by
the portal via a XML-RPC interface [2]. With these commands the portal can
initialise a stream, start or pause it and remove the streaming mountpoint. It
also controls the security layer which is by now only a future concept. It should
strengthen the security and peer authenticity by certificates and SSL tunnel
transmission.

The migration of audio data into the system is under the responsibility of
the operator and/or the partner institution. The IAEM system provides a good
reason to digitise old music pieces and to migrate even multi-track recordings.
The multi-channel and audio rendering capabilities of the system make a realistic
reproduction of such pieces possible.



4.1 Streaming

n order to provide multi-channel capabilities the IAEM content database system
needs to employ a streaming server technology which supports multi-channel
audio formats. Ogg vorbis is a new compressing audio data format for encod-
ing mid to high quality audio at variable bitrates from 16 to 128 kbps/channel.
Since version 1.0 rc1 this standard also provides channel coupling mechanisms
designed to reduce effective bitrate by both eliminating interchannel redundancy
and eliminating stereo image information labelled inaudible or undesirable ac-
cording to spatial psychoacoustic models.

For supporting both the newer ogg vorbis format and mp3 the chosen stream-
ing server is IceCast 2. It is fully controlled by the control block and sets up
mountpoints with specific names. These mountpoint names are random strings
generated by the portal and sent to both, the streaming server and the iARS
client. This provides additional security because only the one client who re-
quested the streaming is aware of the name of the mountpoint.

4.2 Database

Along with references to the audio data the content database contains meta-
data related to the music pieces. The design is based on a relational database
structure and is similar to commonly used library systems, but simplified to suit
our requirements. The interface for portal queries is a standard SQL command
set. Meta-data include references to a composer database, lyrics, scores and other
analysing remarks.

5 The IAEM Portal

The IAEM portal is a content management system with various collaboration
tools with features to drive the iARS plugin and to query the content database
systems. The chosen framework is Zope [3] extended with CMS1 and Plone [4].
For integrating learning sequences into the portal eduPlone was chosen as the
state-of-the-art in the field.

The data presented by the portal is legally sensitive so that a secure authenti-
cation method is compulsory. The Zope system provides a LDAP2 authentication
product with which the user must log in before the portal can be used. This al-
lows also a personalised environment with user defined folders and content. The
rights can be set for every single user so that the access to music pieces can be
clearly determined to prevent any legal conflicts.

Collaboration tools are integrated to ease the communications between the
users. It is hoped that vital discussions and information exchange will contribute
to the content of the portal. Mailing-lists, discussion forums, information agents

1 Content Management System
2 Lightweight Directory Access Protocol



and other common collaboration tools are available to make such exhanges pos-
silble.

For publishing the portal also provides uploading to a content database. The
access rights for user published data can be set by the author via the portal. For
searching the content databases a single line search is implemented as well as a
more complex advanced searching facility.

The didactic value for teaching is given by the integration of the tools into
eLearning courses. eduPlone is a product especially designed for the use with
the Plone CMS system and provides learning sequences for designing eLearning
courses [5]. For example: lecturers may design a course for digital recording
techniques providing raw material (a piece of not post-worked music) via the
portal. In various learning sequences the students are intended to solve problems
like finding a proper loudspeaker arrangement for the recording. They could play
around with the iARS system and save their settings to submitt their results.
Along such sequences a vital exchange beyond the students and the lecturer can
take place employing the collaboration tools integrated into the system.

6 The iARS Browser Extension

iARS (internet Audio Rendering System) is a browser plugin extending the
browser’s capabilities with a flexible audio rendering machine. It can be in-
voked by an “object” tag within web pages. The signal processing is done by the
Pure Data programme which is launched by the plugin and remote controlled
via a XML-RPC interface. The algorithm processed can be defined as a regular
Pd patch along with a graphical representation of the patch. This is done us-
ing a IDL (Interface Description Language). According to this description the
plugin draws controls into the browser window with which the behaviour of the
algorithm can be altered.

iARS implements the Netscape Gecko Plugin API to communicate with the
browser. During the initialisation process the plugin checks for running instances
of Pd and launches an instance if needed. The plugin control block is remote
controlling the Pd programme and builds the graphical representation of the
patch loaded. The Pd programme is launched with externals which extend the
capabilities of Pd for XML-RPC communication and audio streaming. The GEM
library is used to draw real time computer graphics to an assigned window area
using openGL.

6.1 Operation

The plugin is launched by using the “object” tag embedded in regular HTML
code. A MIME type is registered by the plugin at the browser which refers to the
the data type associated. The following listing shows an example HTML code
for embedding iARS objects.



Listing 1.1. Embedded object tag

<html>
. . .

<body>

<OBJECT type=”app l i c a t i on /pd”/>

<param name=”patch ” va lue=”http :// iaem . at /amb . pd”>
<param name=”gui ” va lue=”http :// iaem . at /ambgui . xml”>
<param name=”stream ” value=”http :// db1 . at :8888/NHS271/”>

<param name=”ext ra s ” va lue=”http :// iaem . at / ex t ra s . z ip”>
</OBJECT>
. . .
</body></html>

The object’s application/pd MIME type causes the browser to launch iARS.
A window handle provided by the browser is assigned to the plugin for its graph-
ical representation. The “data” field determines the URI of the requested audio
data, “patchsource” and “gui” both in a URI format assign the Pd patch to be
loaded and its graphical representation. An zip archive of extras may be specified
to provide the patch with additional abstractions or Pd externals. The Gem ex-
ternal of Pd allows the plugin to draw virtual concert situations into the browser
window. It can be used, for example, to show the position of virtual surround
loudspeakers and even allow to alter their position in the virtual room.

6.2 Pure Data

Pure Data is a real time signal processing tool for customary PCs [6]. There
are many extension libraries available for Pd extending its capabilities. The two
main extensions developed for the IAEM project are the XML-RPC interface
and the streaming external. The main advantage of using Pd as the processing
core application is that there already exist many patches. The generic approach
of the plugin allows to reuse these patches only with minor adjustments.

The XML-RPC interface to the Pd programme is intended to become a
comfortable standard of remote controlling the application. It is possible to load
and close patches, but also to communicate with every single element of a patch.
There are mechanisms to bind callback functions to symbols so that a event
triggered communication desired for GUIs is possible.

6.3 Graphical Representation

The graphical representation of a patch is not defined within the patch. This
allows the reuse of existing patches and the definition of a interface descrip-
tion language (IDL) more suitable for our application than the existing. The
implementation of the controls was made using Trolltech’s Qt toolkit [7].

Within the IDL file several controls are defined which are bound to elements
of the Pd patch. If either the user interacts by changing the value in the GUI
or the patch alters the value the counterpart is informed. So, parameters of the



patch can be altered and values can be displayed correctly. The following listing
shows an example of a IDL file describing a graphical representation of a Pd
patch.

Listing 1.2. Interface Description Language Example

<?xml v e r s i on=”1.0”?>

<!DOCTYPE i n t e r f a c e SYSTEM ” i d l . dtd”>
< i n t e r f a c e >

<author>Chr i s topher Frauenberger </author>
<patch>Ambisonic 3D</patch>

<vers ion >1.0</vers ion>

<input name=”stream”/>

<group name=”Example ” o r i e n t a t i o n=”ho r i z on t a l”>
<v s l i d e r name=”Volume” bind=”volume”

min=”0” max=”100” va lue=”10”/>

<l e v e lme t e r name=”Le f t ” bind=”vul ”
min=”−100” max=”0” va lue=”0”/>

<l e v e lme t e r name=”Right ” bind=”vur”
min=”−100” max=”0” va lue=”0”/>

<group name=”GEM” o r i e n t a t i o n=”v e r t i c a l ”>
<ono f f name=”GEM Window” bind=”gemwindow ” va lue=”1”/>

<ono f f name=”OpenGL” bind=”draw” va lue=”1”/>

<h s l i d e r name=”Rotat ion”
bind=”ro t a t e ” min=”0” max=”180”/>

</group>

</group>

</ i n t e r f a c e >

In this example a simple interface is built with a vertical slider for the volumem,
two levelmeters, another slider along with two buttons. The group tag allows
the user interface elements to be grouped together in a frame. The description
shown above results in a graphical user interface shown in figure 2.

All possible tags and their relations are described in the document type
definition “idl.dtd”.

7 Conclusion

The proposed system combines very recent technologies to a powerful research
and lecturing tool. All components were designed to be flexible and generic. The
distributed architecture allows different partners to collaborate for providing
their clients a comprehensive library of electronic music.

The iARS plugin is an approach to introduce real-time audio rendering to the
world of web applications. The underlying Pd programme was chosen because
of its performance and availability for a wide range of platforms.



Fig. 2. Screenshot of the interface described by the IDL example above

Future work will definitely need to proof the concept by usability tests. The
portal and its components will be redesigned on the basis of the results of such
studies.

8 Acknowledgement

This project was kindly funded by the Austrian Federal Ministry for Education,
Science and Culture within the “New Media in teaching at universities and
polytechnics in Austria” project framework.

References

1. Netscape, Netscape Geck Plug-in API, 2002, http://devedge.netscape.com/.
2. D. Winer, “Xml-rpc specification,” Tech. Rep., Userland, xml-rpc.com, 1999,

http://www.xmlrpc.com.
3. Zope, The Zope Book, 2004, http://zope.org/Documentation/Books/ZopeBook/2 6Edition/.
4. Plone, The Plone Book, 2004, http://plone.org/documentation/book.
5. “eduplone concepts,” http://www.eduplone.net/concepts/, 2004.
6. Miller Puckette, Pd Documentation, 2003, http://crca.ucsd.edu/~msp/.
7. Trolltech Inc., Qt Reference Manual, 2003, http://doc.trolltech.com/3.1/.


