
LIVE CODING: AN OVERVIEW

IOhannes m zmölnig Gerhard Eckel
University of Music and Dramatic Arts, Graz
Institute of Electronic Music and Acoustics

ABSTRACT

Within the last few years a new performance practice has
established itself in the field of intermedia art including
computer music: Live Coding. By this a media perfor-
mance is understood, where the performers create and mod-
ify their software-based instruments during the performance.
One promise of this technique has been to give performers
a way of improvising within the realm of algorithms rather
than notes, while at the same time giving the audience a
primary perception of the the algorithms used by means
of projecting the source code, as opposed to the secondary
perception of algorithms in traditional computer music by
means of music alone. Another aspect is probably the de-
velopment and demonstration of a technical mastery of the
instrument “software”.

In this paper we try to give an overview on the evolu-
tion of Live Coding within the last decade.

1. INTRODUCTION

Programs should be written for people to read,
and only incidentally for machines to execute.[4]

Historically, computer music and tape music are closely
related. This is not only true for tape music created with
the help of computers, but also for many so-called real-
time computer music performances, at least from the au-
dience’s point of view. Often, there is not much differ-
ence between a laptop-performer who starts playback of a
multi-track recording and then awaits the end of a piece,
and a laptop-performer who starts dsp-engines, modifies
effects and parameterises algorithms controlling the for-
mer in real-time.

While it is often not so interesting for the audience to
watch pale faces illuminated by computer screens, it is
at the same times often not very interesting for the per-
formers to play their (however complex) systems and al-
gorithms with the limited interface of keyboard, mouse
and fader-boxes.1

The performers are almost exclusively the same people
who have designed and written the software instruments
in countless hours. The traditional separation into com-
poser, instrumentalist and instrument maker is not valid
for them anymore. And since these people spend most of

1 This does not deny all the efforts being undertaken in the field of
New Interfaces for Musical Expression. And doubtless thereare per-
formers who are happy with limited interfaces that make it quiteimpos-
sible to break the entire setup during performance.

their time at the design of their instruments (which, due to
the power of general purpose machines, are not “just” in-
struments but can also hold scores and algorithms, which
will eventually form the “composition”), it is only logical
that this is the field where they gain the greatest skill and
virtuosity: the design of algorithms and their implementa-
tion in source code.

It was only a matter of time until these people started to
utilise their specific skills and explore them in live perfor-
mances, in club concerts and at experimental music festi-
vals.

Writing code before the audience ideally gives the per-
formers an intellectual challenging way to play and im-
provise with their instrument. From the audience’s point
of view, the performers are also physically involved into
the making of music, at least they are struggling with the
computer in a perceivable way. In order to perceive not
only the factthat the performers are doing something but
also what they are doing, it helps to give the audience
some secondary information about the code, for instance
by projecting it onto a video wall.

2. A SHORT HISTORY

Emerging from the club scene at the end of the 1990s, a
number of prominent Live Coding performers soon organ-
ised themselves into an international consortium “for the
proliferation of live audio programming”:TOPLAP[6, 2].

However, traces of Live Coding can be found far ear-
lier.

2.1. The Early Days

Being an art form heavily depending on general purpose
computers, not much Live Coding can be found before the
1950s. Some Authors [2] argue that the tournament on
cubic equations between the two Italian mathematicians
Nicolo Fontana Tartaglia and Antonio Maria Fior about
1539 might be considered an early Live Coding perfor-
mance (albeit it lasted for several weeks and is thus not
directly comparable to today’s short-lived performances).

With the advent of the microcomputer in the 1970s,
computers finally became small enough to fit on stage,
where they could be used as performance instrument. One
of the first known Live Coding sessions is attributed to
Ron Kuivila, performed at STEIM, Amsterdam, in 1985[5].

“The Hub”, one of the early experimental network com-
puter bands in the 1980s [7], allowed the audience to per-



ceive their decision making by giving them read access to
their monitors:

“The Hub’s composers [...] allowed us to walk
around, observe their computer screen mes-
sages, and assuage our curiosity.”[12]

The languages of choice at that time wereLispdialects
(the Hub) andForth (the Hub and Kuivila).

2.2. The Dark Ages

In the 1990s, the energies of the computer pioneers to do
Live Coding seem to have ebbed away. The hype about
the Internet and (related to it) Open Source/Free Software
seems to have bound most of the creative potential within
the hands of software experts. However, both the FLOSS
movement and the Internet have contributed a lot to the de-
velopment and the public perception of software art[29].

2.3. A New Dawn

At the end of the 1990s, software art (and its sub-category
code art) [10] evolved fromnet.art. Exploring the beauty
of algorithms, this movement dealt with code as a new
form of expression[13].

With the ever-growing power of computers, interpreted
languages (or rather: their interpreters) had by now be-
come fast enough to be used to generate audio and even
video in real-time.

In 2000, the duoSLUB(Alex McLean and Adrian Ward)
did their first Live Coding performance (including projec-
tion of source code), utilising a self-written environment
hacked together in languages like Perl and REALbasic.

At about the same time, Julian Rohrhuber did first ex-
periments with Live Coding in SuperCollider.

Since then an increasing number of people have ex-
pressed themselves by the means of source code on stage,
which eventually lead to the founding of an organisation
dedicated to Live Coding,TOPLAP[2].

While at the beginning Live Coding was confined to the
abuse of general purpose languages (Perl) and the exten-
sion of existing computer music frameworks (SuperCol-
lider), soon the development of integrated environments
dedicated solely to the Live Coding of sound and multi-
media (ChucK, impromptu; see Section 5) started.

3. PARALLEL EVOLUTIONS

3.1. Hacking hardware

While Software-Code has become more and more pub-
licly available and perceptible within the last 30 years, a
similar development has taken place within the field of
hardware: electronic devices have started to be designed
as become Open Hardware instead of black-boxes[26].

Within an artistic context a development comparable
to Live Coding can also be spotted: pioneers like Tetsuo
Kogawa have done soldering performances, for example
explaining how to build a mini-FM transmitter[16].

Although many Live Coding artists claim that one of
the core concepts of Live Coding is the making of deci-
sions about algorithms in real-time, one aspect is certainly
to allow the audience to see how things are done that are
usually concealed. Naturally, this applies to the live as-
sembly of electronic parts as well: in traditional music
performance, the instrument (whether it is hard- or soft-
ware based) is build a long time before the performance:
the performance itself then consists of parameterising (aka
“playing”) the instrument.

The two counterparts of creating hardware and soft-
ware in real-time go along well, as is shown in combined
performances such as the “Live Coding versus live circuit
building performance/duel” by Nick Collins and Nicolas
Collins at NIME-07[3].

3.2. eXtreme Programming

Another parallel development can be observed in the com-
puter sciences: agile programming techniques such aseX-
treme Programmingintroduced the principle ofPair Pro-
gramming. Pair Programmingbasically involves two pro-
grammers who work together at one workstation, writing
software. One of the programmers does the typing, while
the partner is watching the code evolve, commenting on it
and hopefully finding problems as soon as they come into
existence [18].

While his technique is not directly related to artistic
performance, it provides similarities; for instance in both
Live Coding and Pair Programming decisions about algo-
rithms (in general) and code (in particular) to be used are
made in the presence of an audience. While the performer
will eventually react on the audience’s behaviour via an
indirect feedback, the co-programmer can directly influ-
ence the evolving code.

4. PARADIGMS AND AESTHETICS

In the Lübeck04 manifesto[28], the members of TOPLAP
state what they believe is important for Live Coding. The
two main issues (apart from the obvious fact that software
has to be written in real-time in order to be called “Live
Coding”) are:

• Live Coding is about algorithms rather than tools

• “Obscurantism is dangerous. Show us your screens.”

Adhering to the “Show us your screens” demand, in a
usual Live Coding performance, the source code is pro-
jected onto a video wall, a practice that somewhat lim-
its the “open aesthetics”[33]. Ensembles likePowerbooks
Unplugged[1] try to overcome this by letting the perform-
ers take place within the auditory and presenting the code
not via big video projections but in the privacy of their
laptop screens[11].

At first glance, Live Coding seems to celebrate the per-
former as a virtuoso, who is in total control of algorithms,
source code and the keyboard.



In contradiction to this, several prominent live-coders,
are following (anti-)postmodernist aesthetics, trying toover-
come the traditional ideas of genius: While Amy Alexan-
der idealises a “goofy” anti-aesthetics[5] as often found
with “geeks” within the current software culture[17], Tom
Hall and Julian Rohrhuber take a more serious approach
by proposing aslow codemovement, which tries to elimi-
nate the virtuosity of speed typing from Live Coding per-
formances: “The slow code movement is to music what
the slow food movement is to cooking.”[15]

5. ENVIRONMENTS

In theory, every programming environment with the abil-
ity to produce sound and a reasonably fast implementation-
execution cycle can be used for Live Coding.

While theoretically it is possible to use compiled lan-
guages for Live Coding, in practice the slow edit-compile-
run cycle allows too little direct interaction for most im-
provisers.

Since Live Coding is still at its infancy, there are not
many Live Coding systems available yet. Therefore Live
Coders either have to write their own Live Coding envi-
ronment from scratch, or extend existing real-time sys-
tems.

Alex McLean and Adrian Ward are well known for us-
ing REALbasic[8], Perl[21] and the Unix command line
interpreterbash[20] as a Live Coding environment.

Compared to multi-purpose programming languages like
Perl, (real-time) computer music languages ease the task
of creating sound a lot.

5.1. SuperCollider & JITLib

Most likely, the first environment based on a computer-
music system and dedicated to Live Coding (orJust-In-
Time Programmingas it is called here) has been thePar-
cel extension to SuperCollider[19] by Julian Rohrhuber,
which was later developed further intoJITLib [24].

JITLib provides a proxy-system for diverse processes
(like synthesis) to be added, modified and deleted at will,
while providing a unified way to switch between various
processes by means of interpolation[25].

Recent additions to this library also allow several per-
formers connected via a physical network to share and col-
laboratively manipulate these processes[11].

5.2. ChucK

ChucK[30] is probably the first computer-music language
dedicated to and designed for Live Coding (orOn-the-fly
Programmingas the authors refer to it).ChucKprovides
language constructs to control, modify and replaceshreds
(tightly synched processes running in parallel at different
speeds) programmatically[33]. In addition to these formal
constructs,ChucK also provides an integrated environ-
ment calledAudicle designed to handle them efficiently
and to visualise the structure and system-interaction of the

resulting software apart from simply showing the source-
code[31], an important aspect for an audience that is not
necessarily code literate.

5.3. Environments for Multimedia

While ChucK provides several graphical representations
of the live-coded software, it is not meant for creating vi-
sual output (yet[32]).

In the meantime, several other Live Coding environ-
ments have been developed with a focus on graphics, video
and multimedia. Since many of these environments are
targeted at VJs producing “visuals”, they have inherent
multimedia capabilities like basic analysis of incoming
sound, in order to tightly couple audio and video.

Other (more direct) multimedia approaches include the
exchange of control data between various system-nodes
dedicated to different media via a higher level protocol, or
the creation of several stimuli from within a true multime-
dia environment[9].

One common problem of these environments is that
both the primary artistic output (the images) and the sec-
ondary one (the code that creates them) are visual impres-
sions and thus overlap in the presentation (at least, if it is
important that the code is shown to the audience).

One solution to this is to present code and imagery on
different screens, eventually with different sizes in order
to focus the audience’s attention on one of the two repre-
sentations. Another solution is to integrate the code into
the imagery, at the cost of making the source code less
readable.

The Thingeeand its underlying languageThingeeLan-
guageare based on Macromedia’s Director and its script-
ing languageLingo. Contrary to most Live Coding en-
vironments where the focus is on the expressivity of the
language,The Thingeeaims at the (eventually software-
illiterate) audience that wants to understand what the pro-
grammer does and how this translates into an artistic out-
come [5].

A more traditional approach (with a focus on the lan-
guage) is represented byfluxus, a scheme/Lispbased 3d
rendering engine with a special editor for Live Coding[14].

Anotherschemebased environment that is dedicated to
both audio and video creation isimpromptu. Unlike most
other environments described here,impromptualso pro-
vides ways for collaborative Live Coding, where several
programmers interact on the code level[27].

5.4. Graphical Environments

Graphical computer music languages, such as Max/MSP
or Pure data[23] have the advantage of offering a repre-
sentation of the source code that is easily accesible by the
audience. While it is arguable that graphical programs
can be quite complicated to read and fully understand[22],
they offer a certain familiarity and metaphors for peo-
ple who would probably be unwilling to read text-based
source code.



Many of these systems provide mature multimedia ex-
tensions (Jitter for Max/MSP; GEM, pdp and GridFlow
for Pure data) for integrated Live Coding of both audio
and video but do not offer any specific constructs for switch-
ing between discontinuities of processes.

6. CONCLUSION

Live Coding has established itself as an alternative to tra-
ditional laptop performances. Offering a form of impro-
visation at an algorithmic level, it gives an insight into
the used algorithms to the audience by making the source
code visible, while at the same time focusing on the (phys-
ical) presence of the performers.

Currently a lot of Live Coding performances take place
either informally in clubs or more formally in experimen-
tal festivals, like theLOSS Livecode Festivalor theLinux
Audio Conference. The main focus is still on the joyful
exploration of this new technique.

Once this performance practice has grown out of its in-
fancy, it might well be that one day live-coding “software
musicians” will be part of traditional ensembles.

7. REFERENCES

[1] Powerbooks unplugged. http://pbup.
goto10.org/, 2003-.

[2] Toplap homepage.http://toplap.org, 2004.

[3] Toplap mailing list archives, 2004-2007.

[4] H. Abelson, G. J. Sussman, and J. Sussman.Struc-
ture and Interpretation of Computer Programs. The
MIT Press, Cambridge, Massachusetts, 2 edition,
1996.

[5] W. Adrian, R. Julian, O. Fredrik, M. Alex, G. Dave,
C. Nick, and A. Alexander. Live Algorithm Pro-
gramming and a Temporary Organisation for its
Promotion, pages 243–261. README, 2004.

[6] R. Andrews. Real djs code live.Wired: Technology
News, 2006.

[7] C. Brown and J. Bischoff. Indigenous to the
net: Early network music bands in the san
francisco bay area. http://crossfade.
walkerart.org/brownbischoff/
IndigenoustotheNetPrint.html, 2002.

[8] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding techniques for laptop performance.Or-
ganised Sound, 8(3):321–330, 2003.

[9] N. Collins and F. Olofsson. klipp av: Live algorith-
mic splicing and audiovisual event capture.Com-
puter Music Journal, 30(2):8–18, 2006.

[10] F. Cramer. Zehn Thesen zur Softwarekunst, chap-
ter 1, pages 6–13. Künstlerhaus Bethanien, Berlin,
2003.

[11] A. de Campo, A. Vacca, H. Hölzl, E. Ho, J. Rohrhu-
ber, and R. Wieser. Code as performance interface
- a case study. InProc. of NIME, New York, to be
published.

[12] K. Gann. The hub musica telephonica.The Village
Voice, (6-23-87), 1987.

[13] G. Gohlke, editor. Software Art - Eine Reportage
über den Code. Künstlerhaus Bethanien, Berlin,
2003.

[14] D. Griffiths. Live coding of graphics. http:
//www.toplap.org/index.php/Live_
coding_of_graphics, 2004.

[15] T. Hall and J. Rohrhuber. Slow code.http://
www.ludions.com/slowcode/.

[16] T. Kogawa. Tetsuo kogawa cooks a fm transmit-
ter. http://anarchy.translocal.jp/
streaming/19911104tkcookstx.ram,
1991.

[17] L. Konzack. Geek culture: The 3rd counter-culture.
In Proc. of FNG2006, Preston, England, 2006.

[18] A. MacKenzie and S. Monk. From cards to code:
How extreme programming re-embodies program-
ming as a collective practice.Journal Computer
Supported Cooperative Work (CSCW), 13(1):91–
117, 2006.

[19] J. McCartney. Rethinking the computer music lan-
guage: Supercollider. Computer Music Journal,
26(4):61–68, 2002.

[20] A. McLean. Angry - /usr/bin/bash as a performance
tool. In S. Albert, editor,Cream, volume 12. Twen-
teenth Century, 2003.

[21] A. McLean. Hacking perl in nightclubs.http:
//www.perl.com/pub/a/2004/08/31/
livecode.html, 2004.

[22] M. Petre. Why looking isn’t always seeing: Read-
ership skills and graphical programming.Communi-
cations of the ACM, 38(6):33–44, 1995.

[23] M. S. Puckette. Pure data. InProceedings of the
International Computer Music Conference, pages
224–227. International Computer Music Associa-
tion, 1997.

[24] J. Rohrhuber and A. de Campo. Uncertainty and
waiting in computer music networks. InProceed-
ings of the International Computer Music Confer-
ence, 2004.

[25] J. Rohrhuber, A. de Campo, and R. Wieser. Al-
gorithms today - notes on language design for just
in time programming. InProceedings of the In-
ternational Computer Music Conference, Barcelona,
2005.



[26] G. Seaman. Free hardware design - past, present,
future. InOekonux Conference, 2001.

[27] A. Sorensen. Impromptu: an interactive program-
ming environment for composition and performance.
In Proceedings of the Australasian Computer Music
Conference, pages 149–153, 2005.

[28] toplap. Toplap manifesto. http://toplap.
org/index.php/ManifestoDraft, 2004.

[29] G. Trogemann and J. Viehoff.CodeArt - Eine ele-
mentare Einführung in die Programmierung als kün-
stlerische Praxis. Springer, Wien, 2005.

[30] G. Wang and P. R. Cook. Chuck: a concurrent, on-
the-fly audio programming language. InProceed-
ings of the International Computer Music Confer-
ence, 2003.

[31] G. Wang and P. R. Cook. The audicle: a
context-sensitive, on-the-fly audio programming en-
viron/mentality. InProceedings of the International
Computer Music Conference, 2004.

[32] G. Wang and P. R. Cook. Chuck: A programming
language for on-the-fly, real-time audio synthesis
and multimedia. InACM Multimedia, 2004.

[33] G. Wang and P. R. Cook. On-the-fly program-
ming: using code as an expressive musical instru-
ment. In New Interfaces for Musical Expression
(NIME), Hamamatsu, Japan, 2004.


