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Introduction

One part of our project “Virtual Gamelan Graz” (VGG)
deals with the analysis and re-synthesis of acoustic radi-
ation considering selected Gamelan instruments. Spheri-
cal loudspeaker arrays seem to be particularly appropri-
ate for the re-synthesis task. This kind of sound source
consists of a solid spherical body, into which individual,
seperately driven loudspeakers are mounted. In this ar-
ticle, we introduce an analytic model thereof.

Similar to the model of Tarnow [1], we want to model
spherical speaker systems, e.g. with the shape of a pla-
tonic solid, analytically. Our aim here is not omnidirec-
tional playback, but the playback of Spherical Harmon-
ics, like described in Warusfel [4][5] and Kassakian [6].

The first section shows our analytic model, combining the
work of Tarnow [1] and a vibrating spherical cap model,
cf. Williams [2] or Meyer [3]. Using the equation of ra-
diation for the multipole source, cf. [2] and Giron [7], we
accomplish setting up the acoustic synthesis as a Least-
Squares problem. In the last section we show how to
use our model to describe the synthesis errors of specific
spherical layouts in terms of frequency and distance.

Multipole Source Model

For an analytic description of spherical loudspeaker ar-
rays, we assume a model of the boundary condition for
the radial sound particle velocity1 v (ϕ, ϑ)|r0

on a sphere
with the radius r0. We decompose v (ϕ, ϑ)|r0

into L
discrete regions, each one describing the area of a loud-
speaker membrane with its own velocity vl:

v (ϕ, ϑ)|r0
=

L
∑

l=1

vl · al (ϕ, ϑ) , (1)

where the aperture functions al (ϕ, ϑ) can be 1 or 0, and
do not overlap, i.e.

∫∫

ai (ϕ, ϑ) aj (ϕ, ϑ) dϕdϑ = 0, ∀i 6= j:

al (ϕ, ϑ) =

{

1 at lth loudspeaker,

0 otherwise.
(2)

Eventually, the residual region ã (ϕ, ϑ) = 1−∑

l al (ϕ, ϑ)
describes solid parts of the array, where v = 0. At first,
let us consider an aperture function â (ϑ) of a polar cap
with aperture angle2 α:

â (ϑ) = 1− u (ϑ− α/2)
SHT←→ Ân, (3)

1All relations hold for the frequency domain at ω. We skipped
the frequency variable ω in the equations for better readability.

2The unit step function u (x) equals 0 for x < 0, and 1 for x ≥ 0.

and the nth component of its Spherical Harmonic trans-
form Ân. We calculate Ân by utilizing the Legendre Poly-
nomials Pn (x), cf. [2], [3]:

Ân =

{

cos
(

α
2

)

Pn

[

cos
(

α
2

)]

− Pn−1

[

cos
(

α
2

)]

, n > 0

1− cos
(

α
2

)

, n = 0.

(4)
Regard the work of Meyer [3] as proof of the consis-
tency of this loudspeaker model. By spherical convo-
lution (cf. Yeo [8]) of â (ϑ) with the Dirac distributions3:

δ (ϕ− ϕl) · δ (ϑ− ϑl)
SHT←→ Y ∗

nm (ϕl, ϑl) , (5)

we move the membrane model â (ϑ) to the locations
(ϕl, ϑl) of the loudspeakers on the spherical array,
cf. Fig. 1. In the Spherical Harmonic domain, isotropic
convolution is transformed to a multiplication, cf. [8].
Referring to Eq. 1, we are able to describe the boundary
condition in Spherical Harmonics:

Vnm|r0
=

L
∑

l=1

vl · Ân · Y ∗
nm (ϕl, ϑl) . (6)

Inserting Eq. 6 into the equation of radiation for the

Figure 1: Our loudspeaker array model is a set of boundary

conditions for the membrane velocities. We model the speaker

vibration as spherical north pole cap with cone angle α ≤
αmax, moved to its positions by convolution, and weighted by

its velocity.

multipole source, cf. Williams [2] and Giron [7], we may

3We use linear indices for the Spherical Harmonics nm = n2 +
n + 1 + m to keep the notation short.



express the sound pressure of the Spherical Harmonic nm
of our array model as:

Spnm (kr, kr0) = iρ0c
h

(2)
n (kr)

h
′(2)
n (kr0)

L
∑

l=1

vl · Ân · Y ∗
nm (ϕl, ϑl) ,

(7)
wherein i =

√
−1, ρ0 is the sound impedance of the air, c

the sound velocity, k = ω
c

is the wave number, r0 the ar-

ray radius, r > r0 the radius in space, h
(2)
n (x) the spher-

ical Hankel function for radiation, h
′(2)
n (x) its derivative.

Radiation Synthesis

At this point, we are able to control the radiation by ad-
justing the loudspeaker velocities vl in Eq. 7. Suppose,
we are given the array radius, hence kr0. For the syn-
thesis of the Spherical Harmonic nm at a chosen target
argument kr, we now face the Least-Squares problem4:

min
~v

(N+1)2
∑

nm′=1

‖Spnm′ (kr, kr0)− δnm‖22 . (8)

Its solution provides a vector of suitable velocites ~v =
[v1, . . . , vL]t. Below, we replace ~v by the extended nota-

tion ~v
(kr,kr0)
nm to indicate the dependency of the solution

on nm and the choice of (kr, kr0). Note that we can only
control Spherical Harmonics up to the order N , bounded
by N ≤

√
L− 1.

Area of Operation

Despite the small Least-Squares errors for Spherical Har-
monics up to order n ≤ N , substantial errors arise due to
aliasing for Spherical Harmonic orders n > N . Neverthe-
less, because the radial propagation in Eq. 7 suppresses
higher orders n > 2

√
kr0−1, we get consistent operation

under certain circumstances. As a simple criterion, we
may require the error measure:

σ2
e =

(N+1)2
∑

nm=0

[

∞
∑

nm′=0

∥

∥

∥
Spnm′ (kr, kr0)|~v(kr,kr0)

nm
− δnm

∥

∥

∥

2

2

]

(9)

to be bounded σ2
e < −3dB. Here, ~v

(kr,kr0)
nm denotes the ve-

locity vector solving the Least-Squares problem in Eq. 8.

Example: Platonic Loudspeaker Systems

Finally, we want to assess the synthesis errors consid-
ering platonic loudspeaker layouts. Fig. 2 shows plots
of the σ2

e = −3dB contour on the corresponding error
surfaces. For each layout, the membrane aperture was
chosen to be α = 0.5αmax, αmax describing the maxi-
mum non-overlapping aperture. Note that the icosahe-
dron with 20 faces is the only layout capable of synthesis
up to N = 3 ≤

√
20−1. In this constellation, the bounds

are kr0 < 2.8 and r/r0 > 2.3, i.e. given the array radius
r0 = 0.1m, the icosahedral array meets the error target
for frequencies f < 1.5kHz and distances r > 0.23m.

4The discrete Dirac delta distribution δnm equals 1 at nm′ =
nm, and 0 otherwise.
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Figure 2: −3dB contours of the Spherical Harmonic synthe-

sis error with platonic spherical arrays.

Conclusions

We have developed an analytical model of spherical loud-
speaker arrays dedicated to the synthesis of Spherical
Harmonic radiation. Our model turns out a very usful
tool, as it can be used to determine the capabilities of
spherical loudspeaker array designs.
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