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ABSTRACT

Spherical loudspeaker arrays are particularly suited for acoustic radiation synthesis in real or vir-

tual reality environments. The spherical arrays in the scope of our paper basically consist of a rigid

spherical body or platonic solid into which individually driven loudspeakers are mounted. Recently,

there have been several publications describing the control of radiation patterns given specific ar-

ray implementations (Warusfel [2][8], Kassakian [9], Behler [5][12], and Avizienis [11]). Our aim

here is to model this kind of arrays analytically. For this purpose we use a model of the bound-

ary conditions for the sound particle velocity imposed by the motion of the speakers. According

to a suitable expansion of this problem into spherical base solutions (cf. Giron [1], Williams [3],

Gumerov[10]) we presented in [13], we are able to describe the radiated sound field. In this paper,

we extend our model with a description of the acoustic coupling between the loudspeakers due

to the exterior sound field and the common enclosure volume. Finally, we verify the expressions

emerging from this approach by comparing them to measurements of a hardware array.

SPHERICAL CAP MODEL
We model spherical loudspeaker arrays as a set of L spherical caps in a rigid spherical shell that

may vibrate at their individual velocity (cf. [13], see also Meyer [4]). To keep the model simple,

we postulate that a cap is a segment of a pulsating sphere with velocity v(l). Therefore, the radial

velocity1 is restricted to be equal at each point on the cap.
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(a) The array model with individually
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Figure 1: Spherical cap model.

Fig. 1(a) shows a set of caps, in which the lth spherical cap is centered around (ϕl, ϑl). Allowing

for a finite thickness, we introduce ri the inner, and ro the outer radius of the shell sphere with

ri < ro.

1Note that every quantity in this paper is described in the frequency domain. We skipped the frequency variable ω for

better readability.



Cap Aperture Functions and Velocity Distribution
A cap membrane of our model can be described as an angular distribution which equals 1 inside,

and 0 outside its respective region. Specifically, this cap region is enclosed by a cone of angle α
with its apex at the origin r = 0, and its symmetry axis extending towards (ϕl, ϑl), see Fig. 1(b):
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The unit step function u {x} in Eq. 1 equals 1 for positive x, and 0 otherwise. Its argument x is the

scalar product cos (θ) = 〈~x, ~y〉 describing the angle θ between the unit vectors ‖~x‖ = ‖~y‖ = 1.

Considering Eq. 1, we may define a surface velocity distribution for all the moving caps. This

distribution is valid at the inner, as well as the outer surface of the shell, i.e. r = ri, and r = ro:

v (ϕ, ϑ)|ri,r0
=

L∑

l=1

a(l) (ϕ, ϑ) · v(l). (2)

Note that Eq. 2 also characterizes the motionless parts of the shell (v = 0).

Spherical Harmonics Domain
In general, we may just as well express distributions a (ϕ, ϑ) on the sphere in terms of their spher-

ical harmonics expansion coefficients Anm, according to:

a (ϕ, ϑ) =

(N+1)2
∑

nm=1

Anm · Ynm (ϕ, ϑ) , (3)

Anm = SHT {a (ϕ, ϑ)} =

∫∫

S2

a (ϕ, ϑ) · Y ∗

nm (ϕ, ϑ) · dΩ. (4)

We use nm = n2 +n+1+m for linear indexing of the spherical harmonics Ynm (ϕ, ϑ); N denotes

the truncation number for the degree n ≤ N , i.e. 1 ≤ nm ≤ (N + 1)2. Ideally, N should approach

large numbers (N → ∞). The interested reader can refer to Kostelec [7]. In particular, the

transform of Eq. 1 yields (like in [13]):

A(l)
nm = SHT

{

a(l) (ϕ, ϑ)
}

= Y ∗

nm (ϕl, ϑl) · 2πNnm

∫ 1

cos(α
2 )

Pn [cos (ϑ)] · d(cos (ϑ)), (5)

where Nnm are the normalization constants, and Pn (x) are the Legendre polynomials (cf. Williams [3],

or Gumerov [10]).

Matrix/Vector Notation for Spherical Harmonics Expansions

Given the cap expansion coefficients A
(l)
nm from Eq. 5, we are able to build an (N + 1)2 element

vector ~A(l). Furthermore, for a set of L different caps, we may build an (N + 1)2 × L matrix A:

A =
[

~A(1), . . . , ~A(L)
]

, ~A(l) = vecSH

{

A(l)
nm

}

:=
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For expansions An depending on n only, the corresponding vector element An has to be repeated

2n + 1 times. Later in this text, we use the expression diagSH {An}, which is a diagonal matrix
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containing this kind of vector:

diagSH {An} :=














A0 0, 0 0 0 . . . 0
0 A1 0 0 0 . . . 0
0 0 A1 0 0 . . . 0
0 0 0 A1 0 . . . 0
0 0 0 0 A2 . . . 0
...

...
...

...
...

. . . 0
0 0 0 0 0 . . . AN














. (7)

MECHANICAL AND ACOUSTICAL INTERACTIONS
Sound Field-Induced Cap Forces

Assume we are given a static model, in which every cap is motionless, i.e. v(l) = 0, ∀l = 1, . . . , L.

Introducing interior and exterior sound fields, we can determine the impact forces on the spherical

caps of the array model, cf. Fig. 2(a). First of all, we introduce sound pressure distributions on

p > 0p < 0

v
(l)

F
(l,ext)

F
(l,int)

F
(l,mech)

(a) Acoustical and mechani-

cal forces on a spherical cap
in radial direction.

(b) Laser Doppler vibrometry (LDV)

measurements on an icosahedral
loudspeaker array.

Figure 2: Acoustical forces and LDV measurement setup.

either side of the spherical shell, i.e. p(ext) (ϕ, ϑ) |ro
on the exterior, and p(int) (ϕ, ϑ) |ri

on the

interior side. Integrating both sound pressures over the aperture a(l) (ϕ, ϑ) of the lth motionless

cap yields the induced radial force F (l), cf. Fig. 2(a):

F (l) =

∫∫

S2

a(l) (ϕ, ϑ) ·
[

p(ext) (ϕ, ϑ)
∣
∣
∣
ro

+ p(int) (ϕ, ϑ)
∣
∣
∣
ri

]

· dΩ. (8)

For the next step, we introduce the transforms, according to Eq. 4:

Ψ(ext)
nm

∣
∣
∣
ro

= SHT
{

p(ext) (ϕ, ϑ)
∣
∣
∣
ro

}

, and Ψ(int)
nm

∣
∣
∣
ri

= SHT
{

p(int) (ϕ, ϑ)
∣
∣
∣
ri

}

. (9)

Inserting the spherical harmonics expansions Eq. 5 and Eq. 9 into the integral Eq. 8, we may

exploit the orthonormality of the normalized spherical harmonics, cf. Gumerov [10]:

F (l) =

∫∫

S2

[
∑

nm′

A
(l)
nm′Ynm′ (ϕ, ϑ)

]

·
[
∑

nm

(

Ψ(ext)
nm

∣
∣
∣
ro

+ Ψ(int)
nm

∣
∣
∣
ri

)

Ynm (ϕ, ϑ)

]

dΩ,

=
∑

nm

∑

nm′

A
(l)
nm′

(

Ψ(ext)
nm

∣
∣
∣
ro

+ Ψ(int)
nm

∣
∣
∣
ri

)

·
∫∫

S2

Ynm (ϕ, ϑ) Ynm′ (ϕ, ϑ) dΩ

︸ ︷︷ ︸

=δ[n−n′]δ[m+m′]

F (l) =

(N+1)2
∑

nm=1

A∗(l)
nm ·

(

Ψ(ext)
nm

∣
∣
∣
ro

+ Ψ(int)
nm

∣
∣
∣
ri

)

. (10)

3

19th INTERNATIONAL CONGRESS ON ACOUSTICS – ICA2007MADRID



Note that changing the sign of m is equivalent to the complex conjugate, hence A
∗(l)
nm = A

(l)
n,−m.

Finally, using the matrix notation of Eq. 6, and its hermitian transpose AH to re-write Eq. 10, we

obtain a compact expression for the L impact forces:

~F (sf) =








F (1)

F (2)

...

F (L)








= AH ·
(

~Ψ(ext)
∣
∣
∣
ro

+ ~Ψ(int)
∣
∣
∣
ri

)

. (11)

Cap Velocity-Induced Sound Field

Referring to the surface velocity in Eq. 2, we specify ~Υ|ri,ro = vecSH{SHT {v (ϕ, ϑ) |ri,ro
}}:

~Υ
∣
∣
∣
ri,ro

=

L∑

l=1

~A(l) · v(l) = A ·








v(1)

v(2)

...

v(L)








= A · ~v. (12)

In the following lines, we use the spherical base solutions of the Helmholtz equation (cf. Giron [1],

Williams [3], Gumerov [10]) to compute the exterior and interior sound field radiated by ~Υ|ri,ro
.

Exterior Sound Field (r ≥ ro)
Using the spherical Hankel functions2 hn (kr), and h′

n (kr), its derivative, as well as the surface

velocity Υnm|ro
, we find a description of the exterior sound field (cf. Giron [1], Williams [3]):

Ψ(ext)
nm (kr) = iρ0c ·

hn (kr)

h′

n (kro)
· Υnm|ro

, (13)

~Ψ(ext) (kr) = iρ0c · diagSH

{
hn (kr)

h′

n (kro)

}

· ~Υ
∣
∣
∣
ro

,

= iρ0c · diagSH

{
hn (kr)

h′

n (kro)

}

· A · ~v,

where i =
√
−1, the air density is ρ0 = 1.2, the speed of sound c = 343m/s, the wave number

k = ω/c, and diagSH

{
hn(kr)
h′

n(kro)

}

following the definition in Eq. 7.

Interior Sound Field (r ≤ ri)
Similarly, but with the spherical Bessel functions jn (kir) and the inner surface velocity Υnm|ri

,

we obtain the interior sound field (cf. Williams [3]) in its vectorial form:

~Ψ(int) (r) = iρ0ci · diagSH

{
jn (kir)

j′n (kiri)

}

· ~Υ
∣
∣
∣
ri

, (14)

= iρ0ci · diagSH

{
jn (kir)

j′n (kiri)

}

· A · ~v.

Here, we chose a different notation ci and ki to account for the propagation properties of the

enclosure medium. For an interior filled with damping wool these are ci = 0.93 · c and ki = k/0.93.

Acoustical Forces
Now, inserting the sound fields of the vibrating caps (Eq. 13 and Eq. 14) into the equation of the

impact forces on the motionless caps (Eq. 11), we obtain the acoustical cap forces ~F (sf):

~F (sf) = iρ0c · AH · diagSH

{(
ci

c

jn (kiri)

j′n (kiri)
+

hn (kro)

h′

n (kro)

)}

· A · ~v. (15)

Note that this approach is based on the principle of linear superposition.

2We use hn (kr) = h
(2)
n (kr) to provide a causal solution to the Fourier expansion eiωt.
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Mechanical Forces

We require specific radial mechanical forces ~F (mech) to induce the velocities ~v on the spherical

caps. These two quantities interconnect via the mechanical impedances ~z of the membranes:

~F (mech) = diag {~z} · ~v. (16)

EQUATION OF MOTION – SPHERICAL CAP MODEL

We set up the inhomogeneous equation of motion with the excitation force vector ~F (exc) as:

~F (exc) = ~F (sf) + ~F (mech). (17)

Inserting the acoustical and mechanical forces (Eq. 15 and Eq. 16), this yields:

~F (exc) =

[

iρ0c ·AH · diagSH

{(
ci

c

jn (kiri)

j′n (kiri)
+

hn (kro)

h′

n (kro)

)}

·A + diag {~z}
]

· ~v,

~F (exc) = Z · ~v. (18)

The expression in the brackets represents the composite impedance matrix Z. Using its inverse

Y, the admittance matrix:

~v = Y · ~F (exc), (19)

Y =

[

iρ0c · AH · diagSH

{(
ci

c

jn (kiri)

j′n (kiri)
+

hn (kro)

h′

n (kro)

)}

· A + diag {~z}
]
−1

, (20)

we can choose an arbitrary excitation force vector ~F (exc) and calculate the resulting velocity vector

~v = f{ ~F (exc)}. The strength of this expression becomes obvious if we assume ~F (exc), so that only

a single cap is actively excited. Eventually, the resulting vector ~v displays motion due to acoustic

coupling, too.

Exterior Sound Field Synthesis Applying Excitation Forces
For an exterior sound field synthesis we may combine Eq. 19 with Eq. 13:

~Ψ(ext) (kr) = iρ0c · diagSH

{
hn (kr)

h′

n (kro)

}

·A · Y · ~F (exc). (21)

The excitation forces ~F (exc) needed to achieve a specific target pattern at kr can be calculated

from the inversion of the above matrix equation. Note that in real loudspeaker arrays these exci-

tation forces ~F (exc) are controlled electrically, e.g. with driving voltages ~u(exc).

Design Example
In Fig. 3, we compare the magnitude responses of Y (ω) with laser Doppler vibrometry (LDV)

measurements from a real, electrically driven icosahedral array (Fig. 2(b)). Therefore we insert

the appropriate model parameters ri, ro, ki, and ci into Eq. 20. For the mechanical impedances ~z
of the caps, we use an RLC model with z = R + iωM +S/(iω) of the membranes. Measurements

with the delta mass method (cf. Dickason [6]) yield the missing parameters M , S, and R.

Due to the proportionality between the forces ~F (exc,l) and the driving voltages ~u(exc,l) on the

speakers, the curves in Fig. 3 verify our cap model. Theoretical resonances at higher frequencies

appear to be damped in the LDV measurements. Deviations of the geometry (platonic solid,

speaker cones and magnets), as well as losses in the damping wool might be the reason for this

behavior.
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Figure 3: According to the icosahedral geometry of our test array, there are 6 types of admittance

functions yij(ω) = vi(ω)
Fj(ω) , reflecting the distinct angular distance classes θν of the array. The

theoretical results of our cap model (black dashed) match the LDV measurement curves (thin

gray) quite well.
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