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Abstract: Spherical loudspeaker arrays for directivity control in sound wave synthesis are a relatively recent research
topic. The accuracy attainable for synthesized directivity patterns mainly depends on three factors: (a) the distance of the
target area to the array, (b) the frequency range of interest, and (c) the sound pressure level. In this article, the radiation
patterns produced by given array structures, and their frequency-dependent dynamic bounds are studied in-depth. As
shown in earlier work, accurate synthesis pattern control is limited towards high frequencies and towards short distances
to the array; in both cases this is due to spatial aliasing. The underlying analytical model decomposes the sound field
on the surface of the array into spherical harmonics. At a given distance to the array, the attenuation of the spherical
harmonic components of the sound pressure depends on the frequency. Therefore, accurate synthesis of directivity patter:
requires appropriate near- or farfield equalization. In order to maintain a desired dynamic range of sound pressure level
within a given range of distances, it is additionally necessary to introduce a lower frequency limit. This paper discusses
these trade-offs analytically, and shows a method how to efficiently implement discrete-time equalization filters.
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1. INTRODUCTION e.g. in Tarnowl[ll], Meyer]8], and Zottelr [L4]TL5]. Nev-
ertheless, there is a growing demand for further theoretical
Recent studies of directional sound field synthesis wisihalysis and verification.
spherical loudspeaker arrays have shown a wide range
of applications, including spatial room acoustic measureeferring to literature (e.g. Giron[l[3], Williams[l[6],
ments, speech communication systems, human comp@amerov|[T]), the spherical harmonics and the correspond-
interaction and sound reinforcement for performing arts. iimg radial functions (the spherical Hankel and Bessel func-
Caussée[]2], and Warusféll [5[.110], both the capture atidns) form a complete set of orthogonal base functions for
the re-synthesis of radiation patterns of musical instrumeatoustic radiation problems. According to Warusfél [5],
are presented. Kassakian and Wedsédl [11] studied the liamrid Meyer[[8], these complex-valued radiation patterns, de-
tations and error bounds of directional synthesis for badiced on the continuous sphef,, are most suitable for
array geometries, while recently a practical implementadiation pattern synthesis. In real-world systems, a finite
tion of a high-order spherical loudspeaker array with praumber of individually controllable drivers are feasible, e.g.
grammable radiation patterns was presented by Aviziedistributed on a sphei&, with radiusry. With these loud-
[L2]. Furthermore, in BehleF]9]i11.3], spatial room acoustigpeakers, only a subset of the radiation patterns can be re-
measurements applied to auralisation in architectural acou®duced (with limited bandwidth); the prescribed radia-
tics are shown as to be another field of applications. tion patterns are either defined by their sound pressure or
by their sound particle velocity at a given (primary) synthe-
More comprehensive theoretical frameworks and analytigid spheres, with given radius-, > o, cf. Fig.[.
studies of spherical loudspeakers and arrays are discussed
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tries. First, a brief theoretical review of spherical hanico
functions and analysis is given, df] [3[] [6], and [7]. In par
ticular, spherical Hankel filters for accurate radial neaud
farfield beamforming are derived and their dependency on
the (primary) synthesis radius, and the target radius,

is shown. A discrete-time implementation of such filters is
given and the results are compared with the theoretical re-
sults. It is further shown, that the dynamic bounds of the
individual drivers introduce limitations on the reprodoiei
bandwidth and target distandesf the array.

2. SPHERICAL DIRECTIONAL WAVE FIELD
SYNTHESIS

As very common in acoustic theory, the following equations
are given in the frequency domain with respect to time. For
notational simplicity, the dependency on the frequenci¢ var
ablew is suppressed. It will be clear from the context of
the discussion if the quantity is in the frequency or in the
time domain. Therefore, the Fourier transform of the sound
pressure (7, w) and of the sound particle velocity(, w)

_ ) o become (7) andv (), wherer represents the position vec-
Figure 1: Two basic arrangements for directivity pattegg,

synthesis are shown: In (a) the sound particle velocity dis-

tribution 9 (¢, )|, on the sphere with radius, = o (Sur- |n the spherical coordinate system with= (r, ¢, 9) the

face of the array) and in (b) the sound pressure distributigsherical harmonics represent an eigenspace for the depen-
p(w,9)],, on the sphere with radius, > ro are synthe- dency on the angular variableg, ), cf. B][B][Z]. Thus
sized. In both cases, the synthesis task can be performegh#expansion of spherical distributions ©r= const into

two seperate steps: i) synthesis of spherical harmonic digherical harmoniésY;™ (¢, ) is convenient. Given the
tributions on a primary sphei&,: angular beamforming radial sound particle velocity (¢, 9)|, , or the sound pres-

i) projection of these distributions on the target sph&se sure p (¢,9)|, , as a boundary condition on a sphete

Ta'

radial beamforming with radiusr, (cf. FigM), it follows for the spherical wave
spectra:
To control a desired angular radiation pattern&n(an- Tmra - //52 v (‘p’ﬂ)“a Y (9,9) - d, @

gular beamforminy optimal weights for the monophonic

loudspeaker signals are derived by its projection onto the ¥7'[. = // p (o, N, - Y (p,0) - dSQ. @)
array-achievable subspace, cf. Warubfél[10], BeHlér [9] o o . .
Kassakian[[T1]. Once control over a set of spherical hgybere* denotes complex conjugation. With the radial solu-
monics on theprimary sphereS, is obtained, these radia-tion of the wave equation, the sound pressure wave resulting
tion patterns can be displaced frafp onto thefocal sphere from Eq.[0 propagates with:

S, by applying a set of equalization filters, iradial beam- mon - hy (k) m
forming i (r) = oy ) . 3)

The prescribed radiation patterns are spatially sampled ¥herex = w/c is the wave number, = v/—1, po is the

the sphere by the finite number of drivers, yielding spati@fnsity of air, and: the speed of soundh,, (kr) is the
herical Hankel function of the second kindndn!, (kr)

aliasing; i. e. ambiguities between the finite set of spherP€ricalt
cal harmonics inside and the remaining infinite set outsitie derivative.
the controllable bandwidth. Recently a study on the sup- . . . )
pression of spherical synthesis errors was present&djn [ ternatively given Eq[R, the sound pressure wave yields:
also showing criteria to reduce distortions by spatialsalia hy (kr)
ing. These criteria mainly depend on the aperture racjus hy (k)

of the spherlcal array and resultin a lower boupe: 2 ro 1within this article the expressiotarget distances used in terms of

for the target radius,, > ;. Moreover, an upper cut-off 5 radial distance to the center of the array, i.e. the origithe spherical

frequency is given witlf < f, ~ 5. coordinate system. It doemt denote the distance to the array’s surface.
0 2In many textbooks the indices andm are referred to adegreeand

The following sections present an in-depth study of the frgger. However, nomenclature in literature on spatial audio nitigrd
3The Hankel functions of the second kind are appropriate irsaia

q_uency dePe”dem _dy_n"’“’nIC bounds to _accurately Symagfems, if the complex exponentials for the Fourier exjparare defined
size prescribed radiation patterns for given array geomeeiwt. Fore=i~t the Hankel functions of the first kind are applicable.

U (r) =

n

- (4)




It is worth mentioning, that all sources — representing thel /pyc are omitted to improve readability.
inhomogeneous parts of the soundfieldave to be situated
within the sphereS, with radiusr,,.

!/
The general signal processing framework of a spherical HEY (w) = ZM @)
loudpeaker beamformer is depicted in Hify. 2. It is easy to hn (w0 Aly)
see, that the radial and angular components of the beam- Fi(eap) (W) = b (w - Atg) @)
forming algorithm are separated, as will be described in the " Iy (w - Aty)

following sections.

A VFORVER = In the equations above, the variables, and kr, are in-
TaiTp) terpreted as acoustic delayg, = r,/c andAt, = r,/c
. W () [ P SVE;“ M NDS(YST?E)""' times the angular frequenay= 27 f. This re-formulation
B o (2) |old \T{] o) S proves to be very demonstrative for the interpretation ef th
oy LN (VRSP (Ol simulation results later in this article.
, <4 } fy? 0 (3,73)l,,
Ry (2) f;\ Y0 (0,9) :
2 | \I/l L : 3. DYNAMIC RANGE LIMITSOF THE RADIAL
N P BEAMFORMER
1 (@,9)
Y (z) The frequency responses for the radial beamforming filters

(Eq.[d) are depicted in Fifl] 3. These responses depend on
the radius-, of the spherical array and ti@rgetdistance-,

for sound field synthesis. An exact calculation of the upper
cutoff frequency is given i [14]; above this frequency spa-
tial aliasing occurs. In the following this cutoff frequenc

is assumed to béry, < x for simplicity, or wAty, < =«
alternatively.

W ’ ’
YN ! o (o0, 91),, —»E(]
Vi (. 9)

Figure 2: Spherical loudspeaker beamformer.

In this section, we introduce a lower cutoff frequency due

2.1. Angular Beamfor mer to a bounded dynamic range, ivéhite noise gairfWNG).

Example: Simulation of the dynamic playback

. . 3.1,
Assumin rf ngular rn resynthesis on th her . . .
ssuming perfect angular pattern resynthesis on the sphére range, theoretical consider ations

S, either the sound particle velocityy|, —or the sound
pressure¥;t| are given for a finite set of spherical harl-
monics(n, m) with n < N at radiusr,, cf. [I4][I5]. This
may be labeled aangular beamforming The coefficients
~™ of a desired angular directivity pattes(, /) are cal-
culated by spherical harmonics analysis as

n Fig. @ frequency responses of spherical radial-
beamforming filters are presented, derived frongigen
sound particle velocity distributioat radiusr,, (cp. EqQLT).
These frequency responses depend on the target distance
and on the degree of the spherical harmonics used for syn-
- thesis. Assuming a dynamic range for simulations of 40dB
Vo = // v (g, 0) - Y (, ) - dQ2. (5) WNG, a feasible synthesis bandwidth(w,, /w;[n]) is indi-

52 cated for different spherical harmonic degreesvherew,,
Therefore, the spherical harmonic coefficients to formgfers to the upperand ] to the lower cutoff frequencies
sharp directional lobe (i, 9) = 6 (¢ — p,, 9 — ¥,) at di- respectively. For instance, the IEM's spherical loudseeak

rection(y,,9,) may be derived as array [T5] features an aperture radius-gf= 30cm, result-
per ing in an upper cutoff frequency ¢f, ~ 600H z. The sim-

ulation results for a target distanceigf= 4 - o, show, that

the spherical harmonics of third degree may be reproduced
properly with a lower cutoff frequency of, = 150H z,
whereas the harmonics of second degree are well synthe-
sized above a minimal frequengy= 75H z respectively.

Yo =Y (‘Ppa Up) (6)
whered (p, 9) represents the Kronecker delta.
2.2. Radial Beamfor mer

In order to achieve a desired angular sound pressure didtricontrast, the radial beamforming filters shown in Elg. 4
bution at a target (projection) sphere with radius: r,, a are derived from a givesound pressure distributioat dis-
radial beamformeiis applied. Basically, this radial beamiancer,. The simulation outcomes are comparable to the
former is composed of a set of ﬁ|tefg,geq> (w) to form the results based on sound particle velocity distributiong, bu
inverse of the wave propagation described in Ehjs. £hnd 4hg curves remain constant over a broad frequency range
directly follows from the equations that filters for all orde wAt,. In this case, no lower frequency bound for the 40dB
m of the same degree are equal; the constant multiplierdVNG dynamic range is indicated.
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Figure 4: Frequency responses of radial beamforming filters
" =80, i i i — .
dynamic = 4008, (Ao} = (82 47 26 16] subject to different ta}rget dlstanggg e.g. @y, =2 Ta
and (b)r, = 4 -r, derived from aiven sound pressure dis-
R tribution at distancer,, cp. Eq[8. The thin gray lines show
== =n=2 i i i
2 the asymptotic approximations of the frequency responses.
-- - u)u -
g i
3 : 4. RADIAL BEAMFORMER IMPLEMENTATION
§’ 1
8- 304 1 . . . . . .
z : In the following section, discrete-time implementatioris o
1 radial beamformers for accurate synthesis of directivétly p
. terns are derived. As shown in the analytical model pre-
ol 1 1 : sented above, these spherical equalization filters areadkfin
107 10" " 10° 1° by ratios of the spherical Hankel functions and their deriva
(ea,0) e tives. Once a discrete-time model of the filters is obtairted,
© [Hn ™" (w) |indBforr, =8-ra is simply applied to spherical loudspeaker arrays, cf.Big.

Figure 3: Frequency responses of spherical radial1. Spherical Hankel Functions

beamforming filters subject to different target distancgs

e.g. (@yp, = 2-rq, (b)r, = 4-17,, and (c)r, = 874, derived The spherical Hankel functions of the second kindw)
from agiven sound particle velocity distributiat distance and their derivatives, (o) are defined as follows (cf]7]):
rq, Cp. EqL¥. The feasible bandwidtt (w, /wi[n]) for N .

a given dynamic range of 40 dB is indicated. The dashed @) 1€ e Z (n+1)! (L) ©)
vertical line indicates the upper cutoff frequency to avoid " in -0\ 2iw

aliasing, the thin grey lines display the asymptotic approx

mations of the frequency responses, and the crosspointsil- Al (v) = -
lustrate the lower cutoff frequencies.

n—1

Note that throughout this article denotes the normalized
frequency® = k r| which simplifies the following

r=c’



derivations. Wi oy v by
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4.2. Laplace-Domain b v, I b :
. -1
Interpreting Eq[® an@10 as a Laplace-Transform of the b,,kz b
. . . .~ . 2, 2.k
spherical Hankel functions usirig= i yields the follow-
ing rational functions irs: -1 " mod(n2)  mod(n+12)
o by o b b o b o
—1 -1
n ~L z z
S bn(k) - F . » o
~ . k=0 Yn —3 W b b
hn(3) *Zn—gm_l e’ (12) 1 Lk v e
-1
n+1 ~k z
Vimy 1 Dokeg Cn(K) - 3 -3 b b3 1
hn(s> —_— Zn T - e S. (12) 2k
n—1 mod(n,2)

The coefficients of the numerator polynomials may be deigure 5: Two examples of digital filter structures for spher

rived using the following difference schemes ical spherical radial-beamforming.
bp(n) = 1, forn>0 (13) kel functions:
n—k—-1)2n—k
bo(k) = (2n )(2n — k) cb_1(k), (14) 1 o _ b\ mod(n:2)
2-(n—k) ha(sAt;) = : At % (20)
fork <n sAt; s
bo(k) = 0, else (15) div(n,2) (5 _ Ab_lti)z 4 Xfi?
=1 s? ,
whereas the coefficients of the derivative of the spherical mod(n41.2)
Hankel functions are given by ) 1 5 — Ab’; '
h, (sAt;) = AL . : x (21)
colk) = —bi(k), for0<k<1 (16) div(n+1,2) (s Y 2 2
en(k) = (n+1) bu(k) +bp_1(k—2), a7) % ,
forn > 1 and =1 s

<k< . . . .
for0<k<n+l with At; = {At,, At,} depending on the respective radii.

In particular, the scaling At, andwAt, yields a displace-
Using the relations above, the polynomials with real-vdlugent of the zeros with — b/At; andw — w/At; by a
coefficientsh,, w;, andb; may be factorized into first- andlinear scale factot/At;.

second-order-sections (FOS, SOS) of the following struc-. . ) ) _
ture 4.3. Discrete-Timelmplementation of the Radial Beam-

forming Filters, Impulse Invariance

1 [(5—b, mod(n,2) Applying the impulse invariance technique to the first- and
ha(8) = 2~ < 3 ) X (18) second-order sectiohin Eq.[ZD and EqA1, the discrete-
on2) time transfer function in z may be derived. The following
’ s-b)P+w [ ion:
(d ”1_"1 (53— b))%+ w? transform pairs are very useful for calculation
=1 s — by
H(s) = 22
1 Y mod(n+1,2) (S) S ( )
h;l(g) = = ( = T) X (19) . 175 -1
5 5 ﬁzﬂgy:L—Ji:i— (23)
div(n+1,2) (5 bl)2 n 72 ( 11)—),; .\ ,
Y l s =0 wj
p . H(s) = —F—— 24
llle = (s) ° (24)
. _ 97 P2 52 7 9). ,—1 -2
”—fo(z):l 2bl+(bl+wl+2b122) AR
(1—-271)

It is worth mentioning, that for a radial beamformer the dif- (25)

Terem normalizations _Wi_tmta and _Atp have to be_ taken 4For more accurate results, the interested reader is refesr€avic-
into account when building the ratio of the spherical Hani [].




The coefficientst;, b,, and @, denote the respective Bruel&Kjeer, Technical Review 4-1974.
Laplace-domain coefficients scaled by the factgrf,, [2] R. Caussé, J.F. Bresciani, and O. Warusfel: Radia-
where f, is the sampling frequency. In Fifl 5 an exam- tion of Musical Instruments and Control of Reproduction
ple of the resulting filter structures for radial beamforgiin  with Loudspeakers. ISMA Tokyo, 1992.

is given; Fig® shows the match of the transfer functiohdl Giron, F.: Investigations about the Directivity of Salin

to the analytic specifications, assuming parameters seitab_Sources. EAA Fenestra, Bochum, 1996.
for the IEM's icosahedral loudspeakBr[15]. [4] Cavicchi, T. J.: Impulse Invariance and Multiple-Order

Poles. IEEE Tran. Sign. Proc. 44(9), 1996.

Aoproximation with second order sections [5] O. Warusfel, P. Derogis and R. Caussé: Radiation

r,=03m, r=12m, { =44100/8 Hz Synthesis with Digitally Controlled Loudspeakers. 03
AES-Convention, New York, 1997.

[6] Williams, E. G.: Fourier Acoustics. Academic Press,
San Diego, 1999.

[7]1 N. A. Gumerov and R. Duraiswami: Fast Multipole
Methods for the Helmholtz Equation in Three Dimen-
sions. Elsevier, 2004.

[8] P. S. Meyer and J. D. Meyer: Multi Acoustic Predic-
tion Program (MAPP): Recent Results. Presented at the
Institute of Acoustics (UK), 2000.

[9] G. Behler: Technique for the Derivation of Wide Band

‘ Room Impulse Response. Tecni Acustica, Madrid, 2000.

0 102 10 [10] O. Warusfel and N. Misdariis: Sound Source Radi-

Frequency [Hz] ation Synthesis: from Stage Performance to Domestic
Rendering116" AES Convention, Berlin, 2004.

Figure 6: Comparison of frequency responses in magi1] P. Kassakian and D. Wessel: Characterization of

tude and phase showing the proposed discrete-time radia§pherical Loudspeaker Arrays17" AES-Convention,

beamforming filters (black) and their analytic counterpart San Francisco, 2004.

(gray). A design example using, = 0.3m, r, = 1.2m, [12] R. Avizienis, A. Freed, P. Kassakian, and D. Wessel:

(w)| [dB]

[H(EaY)
n

andfs; = 44100/8Hz was considered. A Compact 120 Independent Element Spherical Loud-
speaker Array with Programmable Radiation Patterns.
5. CONCLUSION 12d¢" AES-Convention, Paris, 2006.

[13] G. Behler: How to Compare Concert Halls by Lis-

This paper presented a theoretical and simulation analysi¢€ning to Music. 4 ASAIASJ joint meeting, Honolulu,

of directivity pattern synthesis using spherical loudsgea

arrays. It was shown that accurate sound field syntf%fl] F. fot_teri A. iontackchl, and R. Hdld”CTf I\/:odelmg
sis requires appropriate farfield and nearfield equalinatio a Spherical Loudspeaker System as a Multipole Source.

Therefore, equalization filters based on spherical Har:iff]sl':DZAo?tér, itrl\gt%aﬁozl((j)%h Modeling a Radiation Syn-

functions were derived, and ways for efficient discreteeti I .
. . . y . . thesis with Spherical Loudspeaker Arrays"li@terna-
implementations were discussed. Simulation results were

: . - tional Congress on Acoustics, Madrid, September, 2007.
given, revealing a low frequency limit for accurate synthe-
sis, depending on the dynamic range (WNG) of the sound
pressure level and a the synthesis target distance. Tg verif
the theoretical results, measurements in an anechoic room
will be subject to future research. It is worth mention-
ing that radial beamforming filters are applicable to a wide
range of spherical array applications involving micropésn
and loudspeakers in open and closed sphere configurations.
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