
ON THE TRACEABILITY OF THE COMPOSITIONAL PROCESS

Hanns Holger Rutz
University of Plymouth

Interdisciplinary Centre for
Computer Music Research (ICCMR)

hanns.rutz@plymouth.ac.uk

Eduardo Miranda
University of Plymouth

Interdisciplinary Centre for
Computer Music Research (ICCMR)

eduardo.miranda@plymouth.ac.uk

Gerhard Eckel
University of Music

and Performing Arts Graz
Institute of Electronic Music

and Acoustics (IEM)
eckel@iem.at

ABSTRACT

Composition is viewed as a process that has its own
temporal dimension. This process can sometimes be
highly non-linear, sometimes is carried out in real-
time during a performance. A model is proposed that
unifies the creational and the performance time and
that traces the history of the creation of a piece. This
model is based on a transformation that enhances data
structures to become persistent. Confluent persistence
allows navigation to any previous version of a piece,
to create version branches at any point, and to com-
bine different versions with each other. This concept is
tuned to integrate two important aspects, retroactiv-
ity and multiplicities. Three representative problems
are posed: How to define dependancies on entities that
change over time, how to introduce changes ex-post
that affect future versions, and how to continue work-
ing on parallel versions of a piece. Solutions based
on our test implementation in the Scala language are
presented. Our approach opens new possibilities in
the area of music analysis and can conflate disparate
notions of composition such as tape composition, in-
teractive sound installation, and live improvisation.
They can be represented by the same data structure
and both offline and realtime manipulations happen
within the same transactional model.

1. CONCEPTUAL FOUNDATION

1.1 The Double Nature of Composition

Time, along with space the fundamental parameter
of composing pieces of music and sound art, appears
in various forms. A fundamental distinction can be
drawn between the creational time tK – the time in
which a composer creates or manipulates a piece –
and performance time tP – the time in which a piece
is presented to a listener. One feels reminded of the
double nature of the term composition, as pointed out
by Koenig: «By musical composition we generally un-
derstand the production of an instrumental score or

Copyright: c©2010 Hanns Holger Rutz et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution License 3.0 Unported, which per-

mits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

a tape of electronic music. However, we also under-
stand composition as the result of composing [...] (we
say for instance: “I have heard a composition by com-
poser X”).» [1, p. 191] The hermetic view that the
«concept of composition is accordingly closed with re-
gard to the result, but open with regard to the mak-
ing of a composition» [1, ibid.], however is dropped
in favour of one where the electroacoustic composer
is regarded as the «first listener» 1 , often being able
to “perform” the piece in total or part while working
on it, or in fact performing it in a live improvisation
where part of the work is composed (put together)
while being performed, not necessarily arriving at one
pre-defined result.

A special case is added by the medium of sound
installation, where the “piece” often does not have a
beginning or ending, and in which the listener chooses
the time span of exposure to the sounds, sometimes
even influencing the piece in an interactive way. It
is therefore useful to depart from a perspective where
the process of composition terminates in a fixed com-
position, but rather to consider indeterminacy as an
essential ingredient, and therefore to look out for ways
in which indeterminacy can be represented and ma-
nipulated in a composition system. Tentatively, we
further divide elements in tP into those forming a vir-
tual (or prospective) structure and into those forming
several actual realisations of that structure.

1.2 Databases

An interesting taxonomy has been developed in re-
search on database systems: In a bi-temporal database,
two timelines are distinguished: The valid time de-
fines the time in which a database entry has exis-
tence in “reality”, when it «accurately modeled real-
ity» [3]. On the other hand, someone is maintaining
and editing the database, performing operations on
the transactional level, where time means «when an
event is recorded in the database» [4]. The two time-
lines are often seen as orthogonal to each other, and
common queries are punctiform with regard to trans-
actional time and interval based with regard to valid
time (cf. [5]). It follows that, if a composition is con-

1 The term is deliberately taken from Daniel Charles who
demands «a music that takes care to consider the composer not
as the organizer of a technological ritual but, more modestly, as
the first listener». [2, p. 152]

http://creativecommons.org/licenses/by/3.0/


sidered being a kind of database, the composer takes
the role of the operator on the database, and trans-
actional time corresponds with tK. The entries in the
database, the elements from which the music is con-
structed, form one or more valid timeline fragments in
virtual tP and eventually become one particular actual
timeline in tP per performance.

1.3 Persistence

The extension of the valid by the transactional time
layer introduces the history of the creation of a work.
In the taxonomy of Driscoll et al., we call ephemeral a
data structure which is agnostic of its history, so that
any modification to it would let the previous state
fall into oblivion. On the other hand, enhancing an
ephemeral structure so that its previous states are still
accessible, makes it become persistent [6]. The dis-
tinct variants of an ephemeral structure we call “ver-
sions”, and the versions form vertices in a directed
graph such that one vertex vj points to another vk if
vk was created by applying some modification to the
ephemeral structure in version vj .

In a linear perspective, each transaction corresponds
with a new version of the database. However, in a non-
linear perspective, one could depart from any previous
version and branch off. Finally one could even create
a version by combining two previous versions. In the
first case, the graph is a linear path, and the enhanced
structure is called partially persistent, meaning that
«all versions can be accessed but only the newest ver-
sion can be modified». The second case produces a
graph which is a tree, and we speak of full persistence,
where «every version can be both accessed and modi-
fied». In the last case the enhancement which uses «an
ephemeral data structure that supports an update in
which two different versions are combined» is called
confluent persistence, and the versions have the most
general form of a directed acyclic graph (DAG) [6].

We will use persistence not only to model the evolu-
tion of a piece in tK, but also to use version branching
and melding as a joint between virtual elements and
one or more actual realisations in tP. This way we
unify the compositional process and the performance
of pieces.

A critique of the persistence approach comes from
Demaine et al. who state that, since versions are never
overwritten and versions can only depend on previous
versions, «the dependence relationship between two
versions never changes. [...] Thus, the persistence
paradigm is [...] inappropriate for when changes must
be made directly to the past state of the structure.» [7]
Instead they propose «retroactive data structures» as
a new approach that can incorporate deliberate ma-
nipulations of past states of a data structure. Un-
like persistence for which general transformations have
been proposed, retroactivity requires special solutions
for each particular data structure. In section 2.5 we
will face a problem that seemingly calls for some kind
of retroactivity, and we will see that it can well be

solved within the persistence paradigm.

1.4 Multiplicities

If now the compositional process is seen as a sequence
of decision-making or actualisation, we may integrate
indeterminacy into this model. Indeterminacy can be
attributed to three sources: Chance operations, inter-
active sensorial input, and generative (self-modifying
or memorising) structures. Indeterminacy can be sub-
sumed under other forms of multiplicities, namely the
exploratory behaviour of the composer who concur-
rently or successively develops different versions of
(parts of) a piece, and scale where different versions
are developed for different contexts, e.g. modes of spa-
tialisation. In total this leads to five types of multiplic-
ities. The task is then to elaborate appropriate models
for the virtual sources of multiplicities, for example a
model of chance operations, a model of interactive in-
put, etc. Although this is beyond the scope of this
paper, we will use a simple placeholder for temporal
values which are unknown in a version to show that
our general model can indeed be extended to represent
multiplicities.

2. IMPLEMENTATION

2.1 An Overview of Confluent Persistence

Fiat and Kaplan [8] have developed general algorithms
for turning any ephemeral linked data structure into
its confluently persistent counterpart. Our contribu-
tion is to apply this framework to the representation
of temporal objects, extending it in several ways. Be-
fore we describe problem cases and their solution, it
is therefore necessary to give a brief overview of this
framework.

The ephemeral data structure is considered to be
composed of any number of nodes each of which can
have “data” and “pointer” fields. The pointer fields are
used to link nodes together, while the data fields hold
primitive values. Instead of distinguishing data and
pointer fields, we prefer to speak about mutable fields
used to store immutable values and mutable fields used
to refer to other mutable objects.

Each ephemeral node is transformed into a “fat”
node which contains information about all its states
through different versions, using some kind of dictio-
nary for each field. To distinguish which version we
are looking at, the notion of a node pedigree is intro-
duced which basically is a sequence of version identi-
fiers (or vertices), starting from the version in which
a node was created (the seminal version), and carry-
ing successively the identifiers of the versions through
which the node was brought to the currently accessed
version. The identifier of a fat node thus is the tuple
composed of the node pedigree and a reference to the
fat node structure.

To access a field in a particular version of a fat
node, each ephemeral field is replaced by a fat field



which consists of a search trie 2 that carries all values
that have ever been assigned to that field, stored in
the leaves of the trie, and the paths into the trie being
the so-called assignment pedigrees, again a sequence
of version identifiers. In the case of pointer fields –
references to mutable objects –, node identifiers are
stored in the trie, and in the retrieval a transforma-
tion called «Pedigree Prefix Substitution» is applied
to update the node identifier so that it becomes a valid
and unique access identifier within the current path in
the version DAG.

The notion of pedigrees allows for the appearance
of an ephemeral node more than once within the same
version, while maintaining correct access to each ele-
ment. The operation by which a node is re-introduced
into a version is called a “meld”, and it allows for ex-
ample to catenate a linked list to itself or to an older
version of itself.

Our implementation uses Fiat and Kaplan’s com-
pressed-path representation of pedigrees. It is based
on the observation that there are often long linear
sequences in the version graph which produce weak
performance when using a full-path pedigree repre-
sentation. In the full-path representation, the trie
keys grow linearly with the number of versions. In
the compressed-path method, the graph is split into
disjoint (sub-)trees, each of which has an associated
level `, can only be entered at most once per path
and will be represented by two symbols – the iden-
tifier of the version at which one enters the subtree
and the identifier of the version from which one leaves
the subtree (or the terminal version if the path ends
in this subtree). A new subtree with an incremented
level needs to be created when a meld operation is
based on elements from versions of the same tree level.
The so-called index c̃(p) of the compressed path c(p)
is used now as key into the search trie of the fat fields.
It contains all elements of c(p) but the last, the par-
ticular version vertex inside one subtree. The value
stored in the trie is a data structure that contains all
the mappings from the target vertices of assignments
(last elements of compressed paths) to the assigned
values. Given a query key, this structure can find the
nearest ancestor vertex in the subtree.

For the tries, we employ the lexicographic splay tree
of Sleator and Tarjan [9], for the target vertex map-
ping we use a plain list along with a total ordering of
the vertices imposed by the pre-order and post-order
of the subtree, as suggested by Dietz [10] 3 , although
more sophisticated and better performing data struc-
tures are known (cf. [11]).

2 A trie, also called prefix tree, is an associative data structure
where the key consists of a sequence of elements. To find a value
in the trie, the first element of the key is compared to the root
node and the according branch is taken, then the second element
is compared to the node at the second level, and so forth.

3 Briefly, a vertex vj is ancestor of another vertex vk, if vj
appears left to vk in the pre-order traversal and right to it in
the post-order traversal of the tree. Among the candidates, the
element that is rightmost in the pre-order list is the nearest
ancestor.

2.2 Posing a Problem

We will introduce our approach by posing a simple
problem, illustrated in Figure 1, that is to be solved.

Figure 1. First problem: How to define the depen-
dancy of region r2 on r1 such that the former automat-
ically moves along with the latter in future versions?

Bi-temporality is modeled by associating each ver-
sion vertex vj with a point on the creational time-
line (implicit), and the performance timeline tP is ex-
pressed in the ephemeral data structure such that ob-
jects in time are associated with a time interval in tP.
Let the basic class of such objects be (fat) regions, de-
noted by rj . A region can be anything from an audio
file snippet to a code block that generates synthesised
sound. Let i(rj) be the interval of a region, specified
by a beginning time start and a duration dur, such
that i(rj) = (start, dur). These points in time we call
periods.

There are three operations performed by the com-
poser. In v1, a new region r1 is created, forming the
initial element of the performance timeline. The sec-
ond operation, forming the next version v2, adds a
second region r2 such that i(r2) starts at a fixed off-
set after i(r1) stops. Finally, the composer decides
that r1 should last longer and adjusts the duration
of its interval accordingly. The problem is to define
the relationship between r1 and r2 such that under
the modification of r1, we preserve the intention of r2
following r1.

We assume a set of arithmetic operations on in-
tervals and periods, such as addition 4 . In v2 we
would say that i(r2) is created by an expression such as
(start = stop(i(r1)) + po, dur = pd) where po is some
period offset and pd some period duration. However,
the manifest idea of applying the confluent persistence
technique to either resolve the value of the fat inter-
val field of r1 at version v2 or to create a fat pointer
reference entry to it at version v2 would create the
fixed “dependence relationship” that was criticised by
the retroactive approach – i(r2) would depend on i(r1)
assigned in the version that is closest ancestor of v2.
What we want instead is to depend on this interval
no matter at which version of i(r1) we are looking.
The solution is to use a kind of dynamic reference.

4 E.g., we simply define an interval’s stop as start + dur.



Before we give this solution, we present our testing
framework.

2.3 The Testing Framework

For our implementation, we use the Scala program-
ming language [12]. Scala combines object-oriented
and functional approaches and has a rich type system
with single class inheritance and multiple mixins called
traits. A trait can declare a set of abstract methods,
but can also provide concrete definitions. Although
Scala is a compiled language, we use a read-eval-print-
loop (REPL) that allows one to create version vertices
and navigate between them step-by-step. We also an-
ticipate that in a composition environment based on
this framework, the composer would typically create
structures in a REPL. Furthermore, we provide access
to the persistence sensitive environment in the form of
an internal domain specific language extension which
is realised by a combination of methods imported into
the REPL scope and so-called implicit conversions, a
language construct of Scala that can be used to seem-
ingly enrich existing classes with new methods. For
example, we add a method secs to the floating point
class Double to create period literals. Figure 2 shows
an overview of the classes involved.

The environment maintains two access paths into
the version graph, one for reading and one for writing.
When creating a new version, referencing and access-
ing existing objects involves the reading path which
denotes the version we are departing from, and assign-
ments are made using the writing path which denotes
the newly created version. A single version step is per-
formed by method t[T](thunk: => T): T which takes
an argument thunk – a parameterless function with
result type T – and evaluates it in a context where the
read access corresponds to the current version, and the
write access corresponds to a version newly derived
from the current version. The first step in figure 1
becomes:

val r1 = t { region("r1", 0.secs :< 3.secs) }

Note how the interval literal is constructed by tak-
ing a start and a dur period and catenating them with
the :< operator. The result of this operation is stored
in value r1. It is a special region handle that the
environment automatically converts to a region iden-
tifier when used. This saves us from explicitly updat-
ing each access identifier when navigating through the
version graph.

2.4 Solution to the Problem

Assuming that method interval on the region object
returns a reference with the desired semantics as re-
quested in the conclusion of section 2.2, the code for
versions v2 and v3 becomes:

val r2 = t { region("r2", (r1.interval.stop +

2.secs) :< 5.secs) }

t { r1.interval = 0.secs :< 7.secs }

These semantics are achieved by constructing an
IntervalProxy that wraps the underlying fat interval
field in r1. This proxy delegates the interval methods
by using a special access method. When arithmetics
are performed on the proxy’s start or dur fields, they
are wrapped in special PeriodExpr objects.

The access call performs a pedigree prefix substi-
tution as in the pointer retrieval of [8], but prior ac-
cessing the fat field. As a consequence, the proxy ac-
knowledges all modifications made to the field between
the creation of the proxy and the current version. We
therefore call this behaviour “fluent”. In order to ac-
cess a region’s interval without the fluent behaviour,
the proxy is fixed via r1.interval.fixed (cf. fig. 2).
Note that linearity in tK is maintained, so i(r2) in v2
is still referring to i(r1) in version v1!

2.5 Retroactive Operations

In the second problem, the approach of section 2.4
does not help, as we are now faced with version branch-
ing. The problem is depicted in figure 3.

Figure 3. The second problem addresses changes that
need to affect more than one future version.

Here the composer decided to begin with a region
r1 but leaves its duration subject to a later decision.
Next, a version v2 is produced by adding another re-
gion to start after region r1 stops, similar to the pre-
vious example. The dependency of the regions is in-
dicated by the arrow from r2 to r1. After completing
version v2, the composer tries out a different variant,
starting over from version v1, the result of which is
version v3. The finishing task, deciding on the final in-
terval of r1, seemingly calls for a retroactive operation
– a correction of v1. However, throughout our frame-
work we pursue the preservation of causality, that is,
the original states of v1 . . . v3 must still be accessible.
The solution is to insert a new vertex v4 between v1
and its former children, as shown in figure 4(a).

The data structure maintained for the nearest an-
cestor search within a subtree – and until now we have
only dealt with graphs consisting of a single tree –
can be tuned for such a quasi-retroactive insertion.
Method retroc inserts a new version vertex (here v4)
right after its parent vertex (here v1) in the pre-order
traversal list, and right before it in the post-order
traversal list. In this case, this yields a pre-order of
〈v1,v4, v2, v3〉 and a post-order of 〈v2, v3,v4, v1〉, sat-
isfying the condition of v4 being the closest ancestor



Figure 2. Class Diagram. Depicted are only those classes, attributes and methods referred to in this paper.

(a) (b)

Figure 4. Retroactive vertices. (a) Single“corrective”
operation. (b) Incorporating multiplicities.

of v2 and of v3 (cf. footnote 3 ). The corresponding
code is:

val r1 = t { region("r1", 0.secs :< ?) }

val v1 = currentVersion

val r2 = t { region("r2", (r1.interval.stop +

2.secs) :< 5.secs) }

v1.use

val r3 = t { region("r3", (r1.interval.stop +

3.secs) :< 7.secs) }

v1.use // parent of the retroactive vertex

retroc { r1.interval = 0.secs :< 4.secs }

We use ? as a placeholder for an unspecified period.
The currentVersion method is used to capture the
currently accessed version path. Navigation back to
a particular version is achieved by calling use on a
version path.

It has not been explained yet how the linearity of tK
is preserved, so that the original states of versions v2
and v3 are not lost. This is achieved by conditioning

the ancestor lookup using the monotonically increas-
ing vertex indices: When looking up a target vertex
vk, only vertices vj , j ≤ k are considered. Therefore,
v4 becomes effective only after creating further de-
scendants from the graph’s leaves. For example, if v5
is created from v2, the modifications of v4 will be ef-
fective in v5 (since 4 ≤ 5), but not in v2 (since 4 > 2),
preserving the original state of v2. This conditional
behaviour is indicated in figure 4(a): In v2 and v3 the
dashed arrows are followed, while in descendants of v2
and v3 the solid arrows are effective.

Going back to the conceptual layout, intuitively one
could think of using repeated retroactive insertions to
represent the various outcomes of a multiplicity. For
instance, if

?
v5 was a new correction to i(r1), it would

be inserted as a retroactive child vertex to v4. How-
ever, the composer would not be able to freely switch
between these two variants for i(r1) at a later point,
precisely because we enforced the linearity in tK.

We introduce another method multi which is ded-
icated to this problem. multi can only be executed
on leaves of the graph, because it enforces a succes-
sive tree split. Figure 4(b) illustrates this: Initially,
multi creates a neutral vertex v2 which functions as
a common ancestor for any future outcomes of the
multiplicity. The versions v3 and v4 inserted after
the multiplicity are enforced to start new subtrees
at level `2. All vertices belonging to the multiplic-
ity, located at the smaller tree level `1, will be explic-
itly included in the compressed path-representations
as exiting vertices and can thus be seen as mutual
switches. For instance, if we wish to access version v3
incorporating variant v5, the compressed path would
be 〈v1,v5, v3, v3〉, if variant v6 was desired, the path
would be 〈v1,v6, v3, v3〉.



2.6 Melding and Parallel Motion of Versions

The enforcement of tree splitting in multi makes one
think of the original meld operation. Indeed the ver-
tices of the versions succeeding a multiplicity may have
an indegree of > 1 (the indegree is the number of vari-
ants realised) which is also characteristic of a version
meld. The difference is, that in the original confluent
persistence framework, the set of access pointers to
the data structure remains the same. With the use of
multiplicities we are facilitating what we call “parallel
motion” in the version graph so that there are differ-
ent access paths to a particular vertex, carrying the
information about which variant of each multiplicity
is “active”. This is clarified by a final example, shown
in figure 5.

Figure 5. The third problem demands a facility to
continue in a piece without settling on one particular
version (v3 versus v4).

Here, the composer has planned a section for live
improvisation and created a container c1 for it in the
first version. A multiplicity (neutral vertex v2) is cre-
ated to host the different improvisations, so one can
later switch forth and back between them. The two
variants v3 and v4 are simply modeled by adding re-
gions to the container, as the framework really is ag-
nostic to whether an operation is carried out offline
or in realtime. As the composition finally carries on
in v5, this version automatically has a tree level incre-
mented from `1 to `2. The following code simulates
this:

val c1 = t { container("c1") }

val m = multi

c1.use

val (r1, r2) = m.variant {

(region("r1", 0.secs :< 4.secs),

region("r2", 5.secs :< 2.secs)) }

val v3 = m.lastVariant

val (r3, r4) = m.variant {

(region("r3", 0.secs :< 2.5.secs),

region("r4", 3.5.secs :< 3.secs)) }

val v4 = m.lastVariant

rootContainer.use

val r5 = t { region("r5", (c1.interval.stop +

2.secs) :< 4.secs) }

m.useVariant(v3)

r5.interval.fixed // result: 9.secs :< 4.secs

m.useVariant(v4)

r5.interval.fixed // result: 8.5.secs :< 4.secs

As can be seen, method variant { } creates a new
variant transaction, while useVariant updates the ac-
cess path to include a particular variant. Since inde-
pendent regions are created in the two variants, they
cannot be used as references for v5. This reference
problem is solved by introducing the container ob-
ject. Implicitly, in all the previous examples, the re-
gions had been added to the default rootContainer.
We explicitly revert to it for region r5 by calling root-
Container.use.

The neutral vertex v2 gains additional significance
here: As r5 is created, it is added to the root con-
tainer. Assuming that containers are modeled using
a list of the contained objects along with a field for
the size of this list, assignments with compressed path
〈v1,v2, v5, v5〉 are produced in the fat root container.
If now variant v3 is activated, the current access path
becomes 〈v1,v3, v5, v5〉. Consequently, a query for the
number of objects in the root container would termi-
nate in the trie at v1, producing the wrong result, since
c1 was the only container in v1.

This last problem is solved by enhancing the maxi-
mum prefix search in the trie such that if a vertex (here
v3) is not found and this vertex belongs to a multiplic-
ity, it is replaced by the corresponding neutral vertex
(here v2) and the last splaying is repeated.

3. CONCLUSION

We have modeled and an implemented the music com-
position process as a confluently persistent data struc-
ture where the version DAG forms the creational time-
line tK, and the structure itself contains temporal ob-
jects relating to performance time tP. We have en-
hanced this structure with two new operations retroc

to incorporate quasi-retroactive decision making and
multi to integrate realisation variants of the piece.
The apriority of Allombert et al. [13] – ”1. The com-
positional process: the composer builds his interactive
score [...] 2. The performance process: the interactive
score is no more edited”– becomes meaningless, as the
realisations become part of “the piece”, they re-build
it.

The framework remains to be tested in a real-world
and real-time application. For this, an efficient sched-
uler representation of the temporal objects is needed.
Changes induced by retroactivity and switching be-
tween variants of a multiplicity need to be propagated
(e.g., in some form of publisher-subscriber pattern),
and cases where queries become invalid must be han-
dled. This question of inconsistency has been investi-
gated by Acar et al. [14].

4. REFERENCES

[1] G. M. Koenig, Ästhetische Praxis, vol. 3 of
Texte zur Musik, ch. Kompositionsprozesse (1978),



pp. 191–210. Saarbrücken: PFAU Verlag, 1993.

[2] D. Charles,“Entr’acte: “Formal”or“Informal”Mu-
sic?,” The Musical Quarterly, vol. 51, pp. 144–165,
Jan 1965.

[3] R. Snodgrass and I. Ahn, “A taxonomy of
time databases,” ACM SIGMOD Record, vol. 14,
pp. 236–246, May 1985.

[4] G. Copeland and D. Maier, “Making smalltalk a
database system,” ACM SIGMOD Record, vol. 14,
pp. 316–325, June 1984.

[5] B. Salzberg and V. J. Tsotras, “Comparison of ac-
cess methods for time-evolving data,” ACM Com-
puting Surveys, vol. 31, pp. 158–221, June 1999.

[6] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan, “Making data structures persistent,” Jour-
nal of Computer and System Sciences, vol. 38,
pp. 86–124, Feb 1989.

[7] E. D. Demaine, J. Iacono, and S. Langerman,
“Retroactive data structures,” ACM Transactions
on Algorithms (TALG), vol. 3, no. 2, pp. 13:1–
13:20, 2007.

[8] A. Fiat and H. Kaplan, “Making data structures
confluently persistent,” in Proceedings of the 12th
annual ACM-SIAM symposium on Discrete algo-
rithms, pp. 537–546, 2001.

[9] D. Sleator and R. E. Tarjan, “Self-adjusting bi-
nary search trees,” Journal of the ACM (JACM),
vol. 32, no. 3, pp. 652–686, 1985.

[10] P. F. Dietz, “Maintaining order in a linked list,” in
Proceedings of the fourteenth annual ACM sympo-
sium on Theory of computing, pp. 122–127, 1982.

[11] S. Alstrup, T. Husfeldt, and T. Rauhe, “Marked
ancestor problems,” in Proceedings of the 39th An-
nual Symposium on Foundations of Computer Sci-
ence, p. 534, 1998.

[12] M. Odersky, P. Altherr, V. Cremet, I. Dra-
gos, G. Dubochet, B. Emir, S. McDirmid,
S. Micheloud, N. Mihaylov, M. Schinz, E. Sten-
man, L. Spoon, and M. Zenger, An Overview
of the Scala Programming Language, Tech-
nical Report LAMP-REPORT-2006-001.
2nd ed., 2006. Online: http://www.scala-
lang.org/docu/files/ScalaOverview.pdf.

[13] A. Allombert, G. Assayag, M. Desainte-Catherine,
and C. Rueda, “Concurrent constraints models for
interactive scores,” Proceedings of Sound and Mu-
sic Computing Conferences (SMC), pp. 14:1–14:8,
2006.

[14] U. A. Acar, G. E. Blelloch, and K. Tangwongsan,
“Non-oblivious retroactive data structures,” tech.
rep., CMU-CS-07-169, Carnegie Mellon University,
School of Computer Science, 2007.

http://www.scala-lang.org/docu/files/ScalaOverview.pdf
http://www.scala-lang.org/docu/files/ScalaOverview.pdf

	 1. Conceptual Foundation
	1.1 The Double Nature of Composition
	1.2 Databases
	1.3 Persistence
	1.4 Multiplicities

	 2. Implementation
	2.1 An Overview of Confluent Persistence
	2.2 Posing a Problem
	2.3 The Testing Framework
	2.4 Solution to the Problem
	2.5 Retroactive Operations
	2.6 Melding and Parallel Motion of Versions

	 3. Conclusion
	 4. References

