
 
 

25. TONMEISTERTAGUNG – VDT INTERNATIONAL CONVENTION, November 2008 
 

 

Sound Art – Synthesis Based on Rhythm and Fea-
ture Extraction 

Luka Mikula*, Alois Sontacchi**, Robert Höldrich*** 
 

*University of Music and Dramatic Arts Graz, Austria, lukamikula@student.kug.ac.at 
**Institute of Electronic Music and Acoustics Graz, Austria, sontacchi@iem.at  
***Institute of Electronic Music and Acoustics Graz, Austria, hoeldrich@iem.at 

 

Abstract 
This paper presents a software tool that was developed for the transformation of 
audio signals, be it short sounds or whole songs. This can subsequently be used 
to synthesize music from audio signal fragments (“Concatenative Sound Synthe-
sis“). It is attempted to use timbre-related features to re-synthesize audio signals. 
As in a mosaic, an existing song is newly constructed from small parts 
(“frames”) of other songs already stored in a database. Suitable database frames 
are found by feature similarity analysis.  The length of the frames corresponds to 
musically meaningful units. For the implementation suitable onset- and beat 
tracking methods are evaluated. The selection of suitable parameters describing 
the subjective semantic similarities is determined by listening tests. 

1. Introduction 
The process of putting together short recorded audio segments to form new signals has been 
often used as an artistic tool starting from the second half of the 20th century. Artists such as 
Pierre Schaeffer [1], John Cage [2] or Iannis Xenakis [3] manipulated short fragments of 
magnetic tape to create their compositions. Schaeffer presented a composition concept 
where short sound segments are defined as the “basic units of composition” [1]. This 
approach translated into the era of computers and digital sound processing, where 
composers like Curtis Roads [4], Barry Truax or John Oswald [5] use short samples of 
recorded sounds to create new audio material. 
This paper describes a software tool that was developed for automatic synthesis of songs or 
sounds from an existing database of audio material. A combination of database segments 
that closely match the rhythmic and melodic structure of a target song selected by the user 
is concatenated to form a new song. The target song is segmented using onset detection to 
find the beats of the signal and consequently a musically meaningful division into short 
frames. The best-matching frames in the database are found by a similarity analysis of low-
level features. The found frames are then transformed and concatenated to form the new 
signal. 
There have been a number of approaches by other authors to find musically acceptable ways 
to re-synthesize songs from existing audio material. [5] uses a software tool that uses fixed 
segmentation lengths and lets the user choose from a number of options concerning the 
segment windowing and low-level feature comparisons. [6] created extension libraries for 
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SuperCollider where audio files are chopped up according to the found beats and the 
resulting frames are reassembled, creating a “jumbled” version of the original song. [7] 
synthesizes audio material corresponding to a specified MIDI score from an existing 
monophonic audio file. [8] segments two sounds by dividing them into units and calculating 
their distance; the pair that displays the largest distance is switched. [9] uses a loop-based 
approach where the user can choose feature ranges, and only segments whose features lie in 
the specified range are picked. This approach includes a selection mechanism that limits the 
segment search space by isolating sub-spaces that have desired elements in common. [10] 
aligns audio data with its symbolic score, where the algorithm tries to minimise cost 
functions that describe the dissimilarity between database and target song segments and the 
dissimilarity between successive re-synthesized frames. 
This paper is organised as follows: chapter 2 presents the implemented re-synthesis 
interface. It describes the organisation of the sound material database and the work-flow of 
the algorithm, including the segmentation and the segment matching stages. The manner in 
which the found database segments are transformed and concatenated to form the re-
synthesized song is also described briefly. 
A number of different approaches to onset detection are implemented and evaluated in this 
paper. A functioning onset detection is crucial to provide meaningful segmentation points. 
Section 3 presents an overview of the implementations and the evaluation results.  
In order to find the database segments that best match the target song segments, the 
similarity between these has to be described using parameters that can be understood by a 
computer. In order to find a combination of low-level features that best represents the 
perceived similarity between signals, a listening test was carried out. Its results are 
presented in section 4. 
Section 5 gives an overview of important issues and problems that have been addressed in 
this paper. It also mentions possible future research topics that are crucial to producing 
musically and perceptively meaningful sound re-synthesis results. 

2. Synthesis Algorithm Implementation 
The re-synthesis algorithm that was implemented in Matlab is presented in this chapter. The 
necessary steps for the creation and organisation of an audio material database as well as for 
the re-synthesis of target songs are described in the sub-sections of this chapter. 
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Figure 1: Re-synthesis algorithm work-flow 

  

2.1. Segmentation 

In order to divide audio material into musically meaningful regions, the boundaries between 
those regions have to be established. In our case, this is done by finding rhythmic events on 
the tactus metrical level, which is the level a listener would tap along to and which is 
commonly referred to as the “beat” of a signal [11]. The rhythmic events are found by 
creating an onset detection function from the audio material, which represents a sub-
sampled version of the audio signal with maxima at the probable locations of events or 
changes [12]. The different approaches to creating a detection function that were 
implemented are described in detail in chapter 3.  
The audio files are limited to one channel and down-sampled to 11.025 kHz. A Short-Time 
Fourier Transform (STFT) is calculated using a fixed frame length of 128 samples 
corresponding to 11.6 ms and a hop-size of 64 samples. The frame is weighted with a 
Hanning window and zero-padded to a length of 256 samples. 
The next step consists of creating a detection function from the spectral data. To this end, 
four different approaches were evaluated which are explained in detail in section 3. 
The resulting detection function is smoothed using a low-pass filter to remove noise and 
spurious peaks. In order to find only the positive changes which are indicative of onsets, the 
detection function is then differentiated and half-wave rectified. 

( )( )[ ] [ 1] [ ] [ 1]
[ ]

2
x m x m x m x m

df m
− − + − −

=     (1) 

where df[m] stands for the detection function and m for the frame number. 
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The locations of the onsets are then determined by picking out the maxima in the detection 
function. As a certain dynamic fluctuation is to be expected in many audio signals, an 
adaptive threshold is necessary. This threshold is computed by using a fixed threshold 
parameter in combination with an adaptive threshold parameter that is calculated by 
computing the local median of a moving window 

[ ] ...
2 2
H Hthr m median df m mδ λ ⎛ ⎞⎡ ⎤= + ⋅ − +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

    (2) 

where thr[m] is the threshold curve, H the window length for the median computation, δ is 
the fixed threshold parameter and λ the weighting factor for the adaptive threshold. The 
threshold parameters should be chosen with care since they have considerable influence on 
the detection results. Any detection functions above this threshold are assumed to be onsets. 
Two additional processing stages aim to eliminate any false or multiple detections. The first 
one assumes that only actual peaks are onsets, i.e. the maximum has neighbouring values 
that are lower: 

 [ 2] [ 1] [ ] [ 1] [ 2]df m df m df m df m df m− < − < > + > +    (3) 

The second eliminates multiple detections by using a window that has the length of a 
sixteenth note at 208 beats per minute (BPM), which is assumed to be the shortest 
musically meaningful metric unit. Only the point with the maximal detection function value 
in this window is selected.  
The found onset locations are then passed on to an inter-onset interval (IOI) beat tracker. 
The time spans between onsets are evaluated, a procedure that is often found in literature 
([15], [16], [17], [18]). This is done by creating histograms of the IOI distribution for two 
distinct metrical levels, the tactus or “beat” level and the tatum (“temporal atom”) level, 
which describes the rate of the shortest meaningful pulse periods. The histograms are 
weighted with the log-normal distribution proposed by Parncutt [11]  

2
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1 ln

21( )
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mp e
τ
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τσ π

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=        (4) 

with τ as the IOI length in seconds and the shaping parameters σ and m which are set with 
fixed values of 0.28 and 0.55 for the tactus level and 0.39 and 0.18 for the tatum level. 
From these weighted histograms, beat hypotheses are constructed for both metrical levels 
by looking at the highest peaks in the histogram. The reliability of the hypotheses is first 
evaluated by comparing the arithmetic and the geometric mean. If the means show 
significant divergence, which indicates the presence of sharp peaks in the histogram, the 
hypotheses are assumed to be valid, whereas if the means are similar (the distribution of 
values is wider and the peaks are similarly high) the hypotheses are discarded. In the last 
step, the beat hypotheses for both metrical levels are compared in order to arrive at a 
single hypothesis which is then used to correct the previous onset detection results by 
eliminating any onsets that do not conform to the hypothesis. 

 
 

2.2. Feature Extraction 
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After segmentation of the audio files, low-level features that describe spectral and temporal 
characteristics are computed for every segment. These can be combined into higher-level 
descriptors describing “the sound of the song” [19]. The rating of similarity between audio 
signals using a number of features is a widely-researched topic ([19], [20], [21], [22]), 
especially in the context of standard audio descriptions like the MPEG-7 standard [23].  
On the assumption that most segments start with an “attack” phase during which the signal 
is not predictable, every segment is again divided into one region of fixed length (128 
samples or 11.6 ms) – the “transient” region – and one segment with variable length that 
lies between the end of the transient region and the start of the next audio segment where 
the signal is assumed to be stable. Only this stable region is analysed in regard to 
descriptive features.  
For similarity evaluation purposes, a six-dimensional feature vector is calculated for every 
segment. The elements of the feature vector were determined in the course of the listening 
test described in chapter 4 and consist of the following low-level features: 

• The first Mel-Frequency Cepstral Coefficient (MFCC), which effectively describes 
the mean short-time energy changes in a signal1; 

• the zero-crossing rate, which is defined as the number of times a signal changes sign 
during a specified time span; 

• the segment pitch 
• and three statistical parameters describing the shape of the spectral distribution, the 

skewness, kurtosis and flatness parameters 

2.3. Clustering 

Two aims were pursued in the organisation of the audio material database: the search time 
should be minimal, and the sorting manner should mirror perceptual criteria. The solution of 
this problem was found in creating a three-dimensional look-up cube instead of a look-up 
table. The found audio segments are rearranged by sorting them into clusters and sub-
clusters according to the segment length and the segment pitch. Since the length of the 
segment is directly related to the beat structure of the signal and the pitch is related to the 
spectral characteristics, this equals sorting the segments according to their rhythmic and 
melodic characteristics. Each resulting cluster/sub-cluster cube part is filled with the same 
number of segments, ensuring uniform distribution of audio segments over the cube. 
This sorting mechanism leads to two consequences: first, the segments are stored in such a 
way that frames lie in close proximity to frames displaying similar rhythmic and melodic 
characteristics, while more different segments are separated by greater distances. This 
mirrors the neuro-physiologic organisation of the human and animal cortex [21]. Secondly, 
the search time for database segments matching the current target song segment is greatly 
reduced because not all database segments have to be evaluated, only the segments stored in 
the cluster/sub-cluster with similar length and pitch values have to be compared to the target 
song segment. 

2.4. Frame Comparison 

The distance or dissimilarity between database and target song segments is found by 
calculating the Euclidean distance between the respective six-dimensional feature vectors 
described in sub-section 2.3: 

                                                           
1 In literature, the MFCCs are indexed starting from 0 or from 1. In this case, the second approach is used. 
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where sΔ  is the segment dissimilarity (i.e. distance), k stands for the index of the feature, x 
for the database segment and y for the target song segment. The characteristics of the 
database segments that match the target song segments are stored in a look-up table for the 
following re-synthesis stage. 

2.5. Re-Synthesis 

The last algorithm stage consists of transforming the previously selected database segments 
and concatenating them to form a new audio signal. Since in most cases the database 
segments will have different lengths and different volume, they have to be transformed to 
ensure a continuous and stable re-synthesis result.  
The volume adaptation of the database segment is achieved by using a gain curve that 
reaches the maximum gain only at a position well into the stable region of the segment, 
which leaves the transient region unchanged and only modifies the stable region. 
For segment length consistency, two cases have to be distinguished: if the database segment 
is longer than the target song segment, it is simply cut; if the segment is too short, it is 
stretched to achieve the desired length. Stretching was found to be more fitting than looping 
the fragment because simple looping methods lead to perceived discontinuities in the signal 
and more complex looping approaches are computationally intensive. The stretching is 
performed by using the TimeScale SOLA algorithm presented in [24] which is based on the 
synchronous overlapping of segment regions. 

3. Onset Detection 
Onset detection is an important part of the sound re-synthesis algorithm presented in this 
paper because it ensures a perceptually meaningful segmentation of database and target 
song audio material. The need for reliable and fast onset detection systems arose with the 
advent of automatic music analysis and the areas where they are applied have increased 
considerably over the last few years and include harmonic analysis [13], database 
management and indexing [25] and signal transformations, including digital audio effects 
[26]. Existing onset detection systems in the time domain focus on the change in the 
amplitude or energy of the signal [12] or on the signal change in relation to the signal level 
[27]. In the frequency domain, some authors analyse the change between the energy of 
successive short time spectra ([28], [29]), others correlate short-time power spectra [25] or 
evaluate changes in the complex frequency domain [30]. Approaches using dyadic wavelet 
decomposition [31] and Transient Modelling Synthesis [32] have also been used. Another 
possibility of finding onset events is to use a probabilistic approach where the conformity of 
the audio signal to a signal model is evaluated [33]. 
This chapter describes the different approaches to creating a detection function that were 
evaluated; one is based on the approach described in [30] where changes of the Fourier 
coefficients in the complex frequency domain are evaluated (section 3.1), the second one 
tracks the energy in chroma or pitch classes (section 3.2), the third follows the first MFC 
coefficient over time (section 3.3), and the fourth approach looks at changes in the 
modulation spectrum of a signal (section 3.4). The evaluation results concerning these 
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methods are detailed in section 3.5. The pre-processing, post-processing, peak-picking and 
correction stages of the onset detection algorithm are described in section 2.1. 

3.1. Onset Detection in the Complex Frequency Domain 

In most cases, an onset event is accompanied by changes in the amplitude and phase 
spectrum of a signal. [30] uses this fact to find onsets by evaluating the change of Fourier 
coefficients in the complex frequency domain. This approach was implemented in order to 
be able to compare the onset detection methods implemented in this paper to an approach 
that proved to work well for a number of different signals [30].  
The expected combination of spectral magnitude and phase for the k-th STFT bin is given 
by 

ˆ [ ]ˆ ˆ[ ] [ ] kj m
k kS m R m e φ=                      (6) 

where 
ˆ [ ]kR m  is the expected magnitude value and should, for stationary frames, equal the 

magnitude of the previous frame; and 
ˆ [ ]k mφ  is the expected phase value. On the other hand, 

the actual spectral magnitude and phase for the k-th STFT bin is given by 

 [ ][ ] [ ] kj m
k kS m R m e φ=         (7) 

The measure for the stationarity for the k-th bin of a signal between two successive frames 
can be computed by calculating the (Euclidean) distance between the actual and the 
expected complex vectors: 

 ( ) ( ) ( ) ( ){ }2 2ˆ ˆ[ ] [ ] [ ] [ ] [ ]k k k k km S m S m S m S m⎡ ⎤ ⎡ ⎤Γ = ℜ −ℜ + ℑ −ℑ⎣ ⎦ ⎣ ⎦   (8) 

The detection function is then created by summing the differences for all N bins of an STFT 
frame: 

 
1

[ ] [ ]
N

k
k

df m m
=

= Γ∑         (9) 

3.2. Chroma-based Onset Detection 

The chroma scale consists of twelve distinct values or pitch classes corresponding to the 
twelve semitones without enharmonic equivalents represented in the circle of fifths. When 
two different tones are found to belong to one chroma value, this implies that the tones are 
one or more octaves apart from each other. The tracking of chroma values as a twelve-
dimensional vector over time leads to a time-frequency representation of the signal called 
Chromagram or Harmonic Pitch Class Profile (HPCP) [34]. By mapping short-time signal 
spectra onto a chroma scale, the energy of the signal is compressed from the number of 
STFT bins used to 12, leading to a very compact representation of the signal. After 
transforming the signal into the frequency domain using the STFT, the energy of the STFT 
bins is mapped onto a chroma scale reaching from 41 Hz (the E0 tone) to 5 kHz. A chroma 
vector is created where the pitch class that contains the highest amount of energy for every 
STFT frame is stored. The ratio of energy present in the pitch class to the total energy 
contained in the STFT frame is calculated: 
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[ ]c

E mr m
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=          (10) 

with E[m] as the total STFT frame energy and [ ]cE m  as the energy in the current pitch 
class of the chroma vector. This ratio is then differentiated and half-wave rectified as 
described in chapter 2.1 to create a detection function where only positive changes in the 
ratio are considered and the local maxima in this detection function are picked out to find 
the onset time locations. 

3.3. MFCC-based Onset Detection 

The idea behind this onset detection algorithm is to track MFC coefficients over time. The 
calculation of the coefficients is realised as follows: first, the magnitude spectrum of the 
signal is determined and is then filtered by a Mel filter bank, which is a group of triangular 
filters that fulfils the purpose of grouping together frequency components according to the 
Mel scale, which is based on the human perception of pitch distances. The logarithm is then 
computed over the summation of the frequency groups. This mirrors the behaviour of the 
human cochlea, where neuronal impulses are evaluated in frequency groups, resulting in an 
integration of the impulses. In the last stage of the calculation, the values obtained from the 
filter bank are transformed into the cepstral domain using the Discrete Cosine Transform 
(DCT) [35].  

 

Figure 2: First 5 MFC coefficients and locations of hand-labelled onsets (red lines) 

Fehler! Verweisquelle konnte nicht gefunden werden. shows the change in the first five 
MFC coefficients and onset positions determined by an expert listener. Using linear 
regression, a combination of weights was searched in order to create a weighted sum of the 
MFCCs to use as a detection function. However, these weights change considerably over 
different audio signals and genres, which is evidenced by Fehler! Verweisquelle konnte 
nicht gefunden werden., which shows the different weighting factors determined for the 
first five MFCCs for a percussive signal (“Drums”), a non-percussive signal (“Fugees – 
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Ready Or Not”) and a mixture of percussive and non-percussive sounds (“Cream – 
Sunshine Of Your Love”). 
 

 

Figure 3: Weights for the first 5 MFC coefficients determined by linear regression for 
three different audio signals 

As the weights visibly change with the audio signals, it was decided to track only the first 
MFCC over time since it has the sharpest peaks at onset locations (Fehler! Verweisquelle 
konnte nicht gefunden werden.). This can be explained by the fact that the first MFCC is a 
measure of energy change over time. 

3.4. Onset Detection based on Modulation Spectra 

Modulation spectra [14] are based on the interpretation of a STFT as the sub-band output of 
a filter bank. Every sub-band trajectory1  can be analysed in regard to the changes in 
amplitude and phase spectrum by computing a second STFT. The obtained data representa-
tion is called modulation spectrum and is also known as the modulation frequency domain. 

Computing the STFT of [ ]kX n 2  results in the transformed signal [ , ]kX p q%
, the three-

dimensional representation of the modulation spectrum with the modulation frequency p 
and the new time q. The time is decimated because the new time axis is determined by the 
original STFT frame rate.  

The modulation spectrum domain is very useful for applications that concern themselves 
with evaluating the amplitude modulation of the respective sub-band trajectories. For 
example, a sinusoidal signal with constant amplitude will exhibit no changes in the 
modulation spectrum, there will only be a DC component visible. In contrast, any other 
signal with changing amplitude or frequency will exhibit clearly visible changes in the 

                                                           
1 i.e. the temporal evolution of signal amplitude and phase in the frequency range determined by the sub-band 
center frequency and bandwidth 
2 The short-time spectrum of x[n] of the k-th sub-band 
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modulation spectrogram. The changes will be more or less pronounced according to the sub-
band that is analysed. This property is exploited by evaluating the change in the modulation 
spectrum to find onsets in audio signals. The modulation spectrum itself is calculated as 
follows: first, a STFT of the signal is computed using a frame length of 128 samples (11.6 
ms at 11.025 kHz) and a hop-size of 64 samples. The frame is weighted with a Hanning 
window and zero-padded to a length of 256 samples. The STFT is decomposed into 10 
octave-spaced sub-bands, for every one of which a second STFT is computed using a frame 
length of 18 original STFT frames and a hop-size of 1. This leads to 10 modulation spectra, 
one for every sub-band. These are summed together using a weighting biased towards higher 
frequencies similar to the one used by [28], leading to one modulation spectrum representa-
tion. 

10

1

[ ] [ ]p
p

X q pX q
=

= ∑% %         (6) 

where p stands for the sub-band index, [ ]pX q%
 for the modulation spectrum of the p-th sub-

band and [ ]X q%
 for the combined modulation spectrum representation. This weighting is 

used to exploit the fact that onsets are often accompanied by broad-band changes in the 
energy spectrum. 
The weighted and summed modulation spectrum described above is divided into eight 
octave bands covering the complete modulation frequency bandwidth, in our case up to a 
little above 40 Hz. This is done because the energy in the low modulation frequencies tends 
to be uniformly high, in contrast to the higher modulation frequency bands where there are 
numerous sharp increases in the signal energy mainly due to onset events. A weighting 
similar to the method used to form the complete modulation spectrum presented previously 
is used: 

8

1
[ ] [ ]p

p
df q pX q

=

= ∑ %         (7) 

where df[q] describes the detection function, p the modulation spectrum octave band index 

and [ ]pX q%
stands for the p-th modulation frequency octave band. 

3.5. Evaluation 

This chapter presents the results of the evaluation of the reduction algorithms presented in 
the previous sub-sections using a database of simple monophonic sounds and more complex 
pop songs from the last decades. 
The audio files used for this purpose are all sampled at 44.1 kHz with 16-bit resolution. 
They are grouped into four categories: non-pitched percussive (NPP), pitched percussive 
(PP), pitched non-percussive (PNP) and mixed (M). The NPP files contain solely percussive 
sounds extracted from drum and sequencer tracks, the PP files contain songs using 
instruments such as bass guitars with clearly percussive attacks marking onsets, the PNP 
files are made up mostly from songs using soft synthesized sounds or instruments played 
legato, i.e. the transition between successive notes is smooth. Lastly, the sound files 
containing complex mixtures (M) are taken from pop songs. A total of 26 different sound 
                                                           
1 i.e., no time decimation 
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files containing 1514 onsets is used in the evaluation process. The reference onsets are 
labelled by hand using the Sound Onset Labeliser interface from [36]. In order to fairly 
compare the different detection function implementations, the peak-picking algorithm using 
an adaptive threshold mentioned in section 2.1 is used throughout.  
A detected onset is defined to be a correct detection if it falls within 35 milliseconds on 
either side of the according reference onset. While some authors use different tolerance 
regions for different signal types [37], in the interest of results compatibility across the 
databases a fixed tolerance time value is chosen. For comparison purposes, an evaluation 
score that combines the number of correctly detected onsets, false detections and missed 
detections is computed from the results [37]: 

100%TPR
TP FP FN

= ⋅
+ +

       (8)  

where TP stands for the number of correct detections (true positives), FP for the number of 
incorrect detections (false positives) and FN for the number of missed detections (false 
negatives). The resulting score ratio R provides information about how well the onset 
detection algorithm works. 
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Figure 4: Detection results of the 4 implemented onset detection methods for different 
categories of audio signals 

Fehler! Verweisquelle konnte nicht gefunden werden. shows the detection results of the 
previously presented algorithms for different signal categories. As was to be expected, the 
best results are achieved by all algorithms when faced with percussive signals. This is 
explained by the fact that all methods are in principle spectrum-based and percussive sounds 
lead to broad-band energy increases. The detection method based on following the first MFC 
coefficient over time works best for three out of four categories, which makes it the ideal 
candidate for onset detection tasks that have to deal with different signal types. The good 
performance can be explained by the fact that the MFCCs represent the spectral energy 
characteristic of signals in a very compressed way, which also explains the fact that the 
method does not perform as well with non-percussive signals where there are no significant 
energy changes. The approach using modulation spectra works best out of all methods when 
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faced with pitched non-percussive sounds, which is probably due to pronounced changes in 
the lower bands of the modulation spectrum. 

4. Subjective Similarity Evaluation 
A crucial task in any implementation of concatenative music synthesis is to find the audio 
segments that closely match the composer’s vision of the overall sound. This is far from 
easy since the composer’s concept of a sound may not match the actual physical parameters 
of the sound. This necessitates the characterisation of sound not by abstract physical 
parameters but by perceptually meaningful feature parameters extracted from the audio 
data. To gather more information about how listeners evaluate subjective similarity between 
different audio signals and to try to find a feature or a combination of features that best 
describes this perceived similarity, a listening test was carried out. From this test, the 
perceptual space that listeners use to evaluate similarities is analysed by using Multi-
Dimensional Scaling (MDS), leading to a graphical representation of the perceived 
similarity distances. The results of the listening test are evaluated using the statistical 
software package SPSS. 
The listening test was designed as a simple A-B comparison test, meaning the audio 
samples were played pair-wise. The task of the test subject was to define the subjective 
similarity between the two samples with a set of discrete values. A total number of 69 
sample pairs was played back to the subjects, which for the most part can be classified as 
expert listeners, including a control pair that was repeated six times in a random order so as 
to check the reliability of the subjects’ answers. The sample all had similar lengths (about 
0.5 seconds) but displayed different melodic, harmonic and dynamic characteristics. The 
subjects’ task was to rate the similarity between the samples on an eleven-grade scale 
ranging from very dissimilar to very similar. After normalising the answers by removing the 
mean and dividing by the variance for each test participant, the test results were evaluated 
using non-metric MDS.  
In non-metric MDS, the order of proximities (in this case, dissimilarity distances) and not 
their order is meaningful, which corresponds to using an ordinal scaling method. The non-
metric MDS representation is extracted from data by monotonic transformation of the object 
proximities. The points in an n-dimensional space are placed in such a way as to minimise 
the squared deviations between the scaled proximities and the distances between the points 
themselves. Mathematically, this requirement is described by the stress factor 

( )2

2

( )f p d
s

d

−
=
∑

∑

rr

r        (9) 

where s is the stress factor that has to be minimised, pr  is the proximity matrix, ( )f pr  
stands for the monotonic transformation of pr  and d

r
 is the vector containing the distances 

between the points in the MDS representation. While there are different definitions of the 
stress factor available, SPSS uses the version defined by Kruskal [38] described above. The 
stress decreases when the number of dimensions is increased. Stress above 0.2 is considered 
an indication of a poorly-fitting solution while any number below 0.025 is judged to provide 
an excellent fit. The proximity matrices that describe the perceived (dis-)similarities 
between the audio samples were entered into the SPSS interface and analysed using the 
integrated MDS algorithm ALSCAL developed by Forrest Young [39]. This led to a two-
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dimensional graphical representation of the audio sample relationships, which can be 
interpreted as the modelling of the perceptual space the subjects used to rate sample 
similarities. The stress factor for the two-dimensional solution lies at 0.005, indicating a 
very good quality of fit. 
 
After evaluating the perceived distances between the samples pictured in Fehler! 
Verweisquelle konnte nicht gefunden werden. and the sound of the samples themselves, 
the two axes were defined as describing the dynamic change over time and the spectral 
composition of the sound. These loosely describe the temporal and spectral envelopes of the 
signals and are closely related to other evaluation dimension descriptions like Log-Attack 
Time or Harmonic Spectral Centroid and Harmonic Spectral Spread [22]. 

 

Figure 5: MDS representation of audio sample distances 

The similarity distances found by the MDS evaluation of listening test answers were used to 
find a combination of low-level features that describes the signal as fully as possible while 
incorporating as few features as possible to reduce the computation time. To this end, over 
40 different combinations of spectral, temporal and statistical features were evaluated. A 
matrix representation of an equation system is used to find the least-squares solution to the 
problem of finding the feature combination that yields the minimal residual between 
estimated and actual distances. 
By checking the size of the residual for every solution, the combination of features that 
comes closest to describing the sample point distances with a minimal error is found. 
Fehler! Verweisquelle konnte nicht gefunden werden. shows the ten best regression 
results. As was to be expected, a combination of all features worked best. The feature 
combination number 8 was found to have the best trade-off between exactness of results and 
computation complexity (the pitch calculation is already implemented in the re-synthesis 
tool for the database organisation) and is used for the frame matching algorithm stage 
described in section 2.2. The used features and their abbreviations are listed in appendix A. 
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Feature Combination 
Name Feats No. Features Residual 

     

1 All 15
RMS, ZC, PT, MFCC1, MFCC2, MFCC3,  
RO, CT, BN, RN, IR, SP, SK, KU, FL 0,006264923

2 Temporal / Spectral 12
RMS, ZC, PT, MFCC1, MFCC2, MFCC3,  
RO, CT, BN, RN, IR, SP 0,045699485

3 Spectral / Stats 13
PT, MFCC1, MFCC2, MFCC3, RO, CT,  
BN, RN, IR, SP, SK, KU, FL 0,092906633

4 Spectral 10
PT, MFCC1, MFCC2, MFCC3, RO, CT,  
BN, RN, IR, SP 0,11985442

5 MFCCs / Energy / Stats 11
PT, MFCC1, MFCC2, MFCC3, RO, CT,  
BN, IR, SP, SK, KU, FL 0,166007352

6 Tonality / Energy / Stats 13
PT, MFCC1, ZC, RO, CT, RN, RMS,  
BN, IR, SP, SK, KU, FL 0,178389407

7 
MFCC1 / Centroid / 
Zerocross / Stats 6 MFCC1, CT, ZC, SK, KU, FL 0,187361823

8 
MFCC1 / Pitch / 
Zerocross / Stats 6 MFCC1, PT, ZC, SK, KU, FL 0,189502726

9 MFCCs / Energy 8
RMS, MFCC1, MFCC2, MFCC3,  
RO, CT, BN, SP 0,22390577

10 Pitch 6 PT, MFCC1, RO, CT, BN, SP 0,243138767

Table 1: Best 10 regression results for different combinations of low-level features 

5. Discussion of Results and Perspective 
This paper presents a new approach to the re-synthesizing of audio signals from a database 
of existing audio material. A re-synthesis interface was implemented in Matlab to give the 
user control over different aspects of the synthesis algorithm. The algorithm uses a pre-
defined database of audio signals for the re-synthesis of target songs. These target songs are 
analysed in regard to their beat structure so as to achieve musically meaningful segmenta-
tion results and the resulting segments are replaced by database segments using a similarity 
distance measure.  
While evaluation of the re-synthesis results “by ear” show that the overall algorithm is far 
from perfect, it can be viewed as an encouraging step into the direction of musically and 
artistically valid algorithmic sound synthesis. It could be developed as a powerful tool for 
electronic music composition, where similar approaches have been introduced in recent 
years. It could eliminate the time-consuming and tiresome process of searching for sound 
sample material that corresponds to the artist’s vision – he or she could enter an exemplary 
sample and have the algorithm search for a matching sound segment.  
This approach could also be integrated into process-based music and performances, 
allowing the artist to focus on sound combination and processing issues while the sound 
material is chosen algorithmically. 
The algorithm could also be modified to create a recommendation system where users can 
input an exemplary sound sample, a chorus from a song or a whole song and the algorithm 
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could search for similar audio material in a database. This means that the segmentation 
which was implemented based on changes on the beat level of the signal would have to 
concentrate on higher-order metrical levels like measures or harmonic structures. A similar 
approach has been presented by [40] on the chorus level to create short, representative 
“thumbnails” out of music signals. 
One area where the algorithm does not produce acceptable results is when music or audio is 
superimposed with vocals. For such cases, it will be necessary to find a way to re-synthesize 
the musical and the vocal parts of the signal separately. 
As described in section 2.3, the database where segments are stored for later re-synthesis is 
designed as a three-dimensional cubic structure where segments are placed according to 
their length and their pitch value. This organisation greatly reduces computation time and 
ensures optimal usage of disk space, which is an issue with large sound databases. A 
possible approach to future database organisation could be to use not the uniform 
distribution of frames across clusters and sub-clusters as presented here but to model the 
cluster size according to the probability distributions of the frame data. This means that 
frequent length and pitch values are “quantised” using smaller steps. 
One of the crucial issues of music re-synthesis is onset detection because only a well-
functioning onset detection algorithm guarantees meaningful segmentation of audio signals. 
As Fehler! Verweisquelle konnte nicht gefunden werden. or [12] show, different 
methods work well only in specific contexts or for certain signal types. In the future, a 
method that delivers acceptable results over all possible audio signals is needed. The onset 
detection algorithm based on MFCCs presented in section 3.3 works well for three out of 
four signal categories, which is acceptable in most cases. Another possible approach could 
be to use a “modular” approach where the signal is first analysed in regard to percussive-
ness or genre (there have been attempts to extract the genre from music signal, see e.g. [41]) 
and an onset detection method suitable for this signal type is used.  
Another important problem is the extraction of features from audio signals. In the context of 
database management and audio signal description1, features have become an important 
issue in audio applications. Research topics in this field include instrument sound 
description [22], audio classification ([20], [42]) and the correlation between features [19]. 
Future tasks will include deeper research into the correlation between human perception and 
signal similarity. The relationship between subjective attributes such as “brightness”, 
“sharpness” or “compactness” [21] and objective signal parameters such as “attack time” or 
“spectral deviation” [22] has not yet been fully explained. The main issue will be finding 
the smallest possible feature set that best describes the character of an audio signal. 
Listening to the re-synthesis results shows that the principal structure of the target song is 
reproduced quite well, while melodic and rhythmic details and finer structures are not. 
Some of the unsolved issues and problems concerning music re-synthesis are addressed 
above, among them the need for improved onset detection and feature comparison, which in 
the authors’ opinion are the most important unsolved problems. In conclusion, it can be said 
that this paper represents a step towards musically acceptable concatenative re-synthesis of 
audio signals, but there is still a lot of work to be done. 
 
 
 
 

                                                           
1 the MPEG-7 standard defines such a standard for audio signal description [31] 
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6. Appendix A – Used Low-Level Features 

RMS Root Mean Square Energy  BN Brightness 

ZC Zero-Crossing Rate  RN Roughness 

PT Pitch  IR Irregularity 

MFCC1 First MFC Coefficient  SP Spectral Spread 

MFCC2 Second MFC Coefficient  SK Skewness 

MFCC3 Third MFC Coefficient  KU Kurtosis 

RO Spectral Roll-Off  FL  Flatness 

CT Spectral Centroid    
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