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Introducing Time-Frequency Sparsity by Removing
Perceptually Irrelevant Components Using a Simple
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Abstract—We present an algorithm for removing time-
frequency components, found by a standard Gabor transform,
of a “real-world” sound while causing no audible difference to
the original sound after resynthesis. Thus this representation is
made sparser. The selection of removable components is based
on a simple model of simultaneous masking in the auditory
system. Important goals were the applicability to any real-
world music and speech sound, integrating mutual masking
effects between time-frequency components, coping with the
time-frequency spread of such an operation, and computational
efficiency. The proposed algorithm first determines an estima-
tion of the masked threshold within an analysis window. The
masked threshold function is then shifted in level by an amount
determined experimentally, and all components falling below this
function (the irrelevance threshold) are removed. This shift gives
a conservative way to deal with uncertainty effects resulting from
removing time-frequency components and with inaccuraciesin
the masking model. The removal of components is described as
an adaptive Gabor multiplier. Thirty-six normal hearing su bjects
participated in an experiment to determine the maximum shift
value for which they could not discriminate the irrelevance
filtered signal from the original signal. On average across the
test stimuli, 36 percent of the time-frequency components fell
below the irrelevance threshold.

Index Terms—simultaneous masking; irrelevance filter; spec-
tral masking; sparse representation; Gabor filter; Gabor trans-
form; time-variant filter; efficient algorithm; masking mod el;
EDICS : AUD-AUDI Auditory Modeling and Hearing Aids, AUD-
ACOD Broadband and Perceptual Coding; AUD-ANSY Audio
Analysis and Synthesis

I. I NTRODUCTION:

It is known in psychoacoustics that not all time-frequency
components of a “real-world” acoustic signal can be perceived
by the human auditory system. More precisely, it turns out
that some time-frequency components mask other components,
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which are close in the time-frequency domain. Deleting these
masked and thus perceptually irrelevant components makes the
signal representation more sparse and the resynthesized signal
would be expected to sound equivalently to the original signal.

A well-known technique to reduce the digital size of an
audio file, theMP3 audio codec [1], is based on a model
of human auditory perception. This and similar perceptual
audio codecs like AAC (see [2] for a review), allocate low
bit rates to frequency channels which are subject to masking
effects and thus have little or no perceptual relevance. This
technique is very efficient in reducing the capacities required
for transmitting and storing audio files.

The goal of the algorithm presented here, referred to as the
“irrelevance filter” , is not to reduce the digital size of a sound.
Rather, its goal is to remove those time-frequency components
in a standard Gabor transform, whose removal causes no
audible difference to the original signal after resynthesis. Note
the difference to perceptual audio codecs; they use a low bit
depth and thus introduce quantization noise in frequency bands
were the signal falls below the masked threshold. In contrast,
in the proposed model we want to either keep a component or
remove it if irrelevant. Thus, we attempt to introduce “silence”
in bands were the signal falls below the irrelevance threshold.
In other words, the algorithm searches for a time-frequency
representation, which is sparser but perceptually equivalent to
the original representation after resynthesis.

The algorithm should work for most ’every-day’ sounds,
i.e. real-world music and speech signals, and no calibration
should be necessary.

The proposed algorithm uses a simple model of simultane-
ous masking (also referred to as spectral masking) which is
based on data from the psychoacoustic literature (see section
III.A). The properties of simultaneous masking for simple
stimuli (such as sinusoids or bandpass noises) have been
studied extensively (see reviews by [3] and [4]). A basic
model for the simultaneous masking effect, referred to as the
excitation patternmodel of masking [5], [6], [7], is that the
auditory system can detect a target presented simultaneously
with a masker only if the excitation pattern of target plus
masker significantly differs from that of the masker alone. If
the two excitation patterns do not differ in a way detectableby
the auditory system the target cannot be perceived, it is masked
[7]. This basic model allows for the prediction of the masked
threshold of a target signal in the presence of a masker signal
[7], with certain constraints upon the stimuli. The masked
threshold is defined as the minimum level of the target at
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which it is audible in the presence of the masker. In sections
II.D and II.E we provide an overview of different properties
of auditory masking and of different modeling approaches that
have been shown to be successful in predicting simultaneous
masking effects.

The concept of the excitation pattern has also been used in
perceptual audio codecs to predict masking effects caused by
individual spectral components of music or speech sounds (e.g.
[8], [9], [2], [10], [11]). The aim is to calculate the masked
threshold in each frequency channel of the analysis-resynthesis
system to obtain a measure for the maximum tolerable level
of the quantization noise in the respective channel. The level
of the quantization noise is controlled by the allocated bit
depth. In order to determine if the quantization noise in a
given channel is audible or not, the quantization noise in
that channel is considered as target and the total input sound
is considered as masker. According to the excitation pattern
model of masking, the target (i.e. the quantization noise) is
considered to be audible as long as adding it to the masker
(i.e. the total input sound) results in a significant change in the
corresponding excitation pattern. This process is repeated for
each channel to obtain an estimate of the bit depth required in
each channel. In this way, reducing the bit depth for frequency
channels that are perceptually less relevant due to masking
effects allows to reduce dramatically the digital size required
for encoding without quality loss compared to encoding at a
fixed bit depth ([2]).

Given this knowledge from the literature, an apparently
straight-forward solution to implement the irrelevance filter
algorithm would be to first identify the components which
are masked by other components, using a masking model like
the excitation pattern model, and then to re-synthesize only
those components that are not subject to masking. However, it
became clear after initial considerations and heuristic pretests
that using this approach is often not successful, since the
resynthesized signal could often be discriminated from the
original signal. Obviously, an important requirement of the
irrelevance filter was not satisfied, i.e., the auditory representa-
tion of the filtered signal differs from that of the original signal.
One problem leading to this is related to a general property of
time-frequency representations. Removing a component will
cause changes at time-frequency locations remote from that
component. This can in turn lead to changes in the mutual
masking effects between the components and thus in the
auditory percept compared to the original sound.

Another problem arises from the application of the concept
of the excitation pattern model of masking to identify and
subsequently remove masked components from real-world
signals. For such signals most often more than one components
are subject to masking at a time, thus should be removed. This
in turn leads to a violation of the assumption of the excita-
tion pattern model thatall components except for the target
component are considered as maskers. The probable result is
a lowered total masking effect within the resynthesized signal
compared to the original signal for which the masking model
has been applied and thus an audible difference between the
two. In other words, removing more than one component at a
time can result in unpredictable masking effects.

In summary, the irrelevance filter approach has properties
and requirements that differ from those of established models
that are used to predict the simultaneous masking effect of
one signal on another signal. Let us stress the difference
between an irrelevance and a masking approach again. A
masking model gives an indication if adding a second signal
(target) to a given signal (masker) can be perceived or not. In
comparison an irrelevance model gives an estimation which of
the components of the signal can be removed. In this paragraph
let us use the word ’component’ in the most general way
as a, possibly complex, part of an additive synthesis model.
While it is possible to use a masking approach for a two-
component signal to determine if one of the two components
is irrelevant or not, for a multi-component signal this would
require the comparison of all possible combinations of two
sets of components, as there is no clear distinction between
target and masker. Such an iterative approach would be very
time-consuming even for a small number of components. If
no a-priori signal model (with only a few components) can be
assumed, but instead a signal-independent representationlike
a Gabor or wavelet representation has to be chosen, this leads
to a lot of components and a very infeasible scheme.

In order to deal with the specific problems associated with
removing components from a signal, the following strategy
was pursued. First, the masked threshold function was cal-
culated, representing the basic simultaneous masking effect
as described above. Then, the masked threshold function
was shifted in level by a certain amount corresponding to
the results of a perceptual experiment and all components
falling below the shifted function (the irrelevance threshold)
are removed.1 At the level shift determined the subjects
could not discriminate the irrelevance filtered signal fromthe
original signal. Using this approach allows to cope with the
uncontrolled effects of the above-mentioned properties associ-
ated with the removal of spectral components. Furthermore,
it allows to cope with inaccuracies of the masking model
itself. The masking model chosen for the current algorithm is
simple considering the nonlinearities and complex interactions
involved in auditory masking for real-world sounds. These
include nonlinear additivity of masking [12], [13], across-
frequency integration in signal detection [14], [15], and sup-
pression [16], [17]. In this way a conservative criterion is
provided for deciding which components can be removed
without any audible difference to the original sound.

The primary task of such an irrelevance filter algorithm is
to remove components of a Gabor transform which cannot
be perceived by the human auditory system due to mutual
masking effects. Since the masking effect depends on the
signal itself, which is variable across time, it can be modeled
as an adaptive non-linear filtering process. The process can
be split into two steps, first the adaptive calculation of the
operatorG and second its application on the signal.

1.) x 7→ G(x) 2.) x 7→ G(x) · x .

1Note that both the masked threshold function value at a givenGabor
coefficient and the level of the time-frequency component, with which it
is compared to, represent levels that are integrated over a spectro-temporal
region.
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The first step is non-linear, whereas the second step is lin-
ear. The following section describes the time-variant filtering
process known as a Gabor multiplier [18] as well as Gabor
filter [19]. Then, the psychoacoustical background, the existing
masking models, and the implementation of the algorithm are
described. The last section describes the perceptual experiment
to control the free parameter, the level shift of the irrelevance
threshold, using the criterion of the discriminability between
the original and the filtered signal.

The irrelevance filter presented here has first been devel-
oped and tested in [20] and implemented inSTX [21], a
signal processing software system designed at the Acoustics
Research Institute of the Austrian Academy of Sciences. Prac-
tical experience indicates that the irrelevance filter is a very
effective algorithm for real-world music and speech sounds.
The resulting signal representation is more sparse and easier to
interpret. Main applications are the facilitation of the synthesis
of sounds and the ease of the interpretation of time-frequency
properties of signals used in perception-related tasks.

II. BACKGROUND: NOTATION AND PRELIMINARIES

A. Frames

To introduce the issue of perfect resynthesis a short sum-
mary of frame theory [22], [23] is given. Frame theory has
been recognized as being important for signal processing in
recent years [24], [25].

Let H be a Hilbert spaceH with inner product〈., .〉. The
sequence(ψk) of elements inH for k = 1, 2, . . . is called a
frame, if constantsA,B > 0 exist, such that

A · ‖f‖2 ≤
∑

k

|〈f, ψk〉|2 ≤ B · ‖f‖2 ∀ f ∈ H. (1)

The constantsA and B are calledlower frame boundand
upper frame bound, respectively. If these bounds can be chosen
such thatA = B, then the frame is calledtight. If A ≈ B, the
frame is calledsnug. The operatorS : H → H, defined by

S (f) =
∑

k

〈f, ψk〉 · ψk ∀f ∈ H

is called the frame operator. For every frame, the frame
operator is self-adjoint, positive and invertible.

Frames are useful for signal processing applications, be-
cause they allow perfect reconstruction. With

(
ψ̃k

)
:=(

S−1ψk

)
, the so-calledcanonical dual frameevery signalf

can be expanded to

f =
∑

k∈K

〈
f, ψ̃k

〉
ψk andf =

∑

k∈K

〈f, ψk〉 ψ̃k.

For a tight frame this reconstruction has a very simple form,
f = 1

A

∑
k∈K

〈f, ψk〉ψk. For snug frames this simple recon-

struction given above gives a very good approximation off .
This means that for a system, e.g. a filterbank, that con-

stitutes a frame, we can find the perfect synthesis system by
calculating the inverse frame operator and applying it on the
original system. There are some algorithms for calculatingthis
inversion in an efficient way [22], [26]. For tight and snug
frames no complex calculation is needed.

B. Time-Frequency Analysis

The Fourier Transformation, denoted byf 7→ f̂ , is a well
known mathematical tool to analyze the frequency content
of a signal f . Thanks to the very efficientfast Fourier
transformation (FFT) [27], many discrete applications and
developments have been made feasible. Listening to a sound,
a voice or music, a listener does not hear spectral components
and their amplitudes only, but also their dynamic evolution.
A well known algorithm for a time-frequency representation
is the Short Time Fourier Transformation, STFT [28]. One
way to look at the STFT is to multiply the signalf(t) with
a window functiong(t − τ) to obtain a version of the signal
that is concentrated at the timeτ (if the window is chosen
accordingly). Then the Fourier transform is applied to the
result:

STFTg(f)(τ, ω) =

∞∫

−∞

f(t)g(t− τ)e2πiωtdt.

This can also be seen as a projection of the signalf(x) on
the time-frequency shifted Gabor atomMωTτg(t), whereT
denotes thetranslationoperator (i.e.(Tτf) (t) = f(t−τ)) and
M the modulationoperator (i.e.(Mωf) (t) = e2πiωtf(t)):

STFTg(f)(τ, ω) = 〈f,MωTτg(t)〉 .

If the STFT is not considered for continuous variablesω and
τ , but in a sampled version, it is called aGabor transform.
A Gabor systemwith time shift parameterH , also calledhop
size, and frequency shift parameterω0 is given by:

G(g,H, ω0) = {Mω0·lTH·kg : k, l ∈ Z} =

= {e2πiω0lxg(x− k ·H) : k, l ∈ Z}.

The Gabor transform is the projection on the Gabor system.
The equivalence between Gabor analysis and corresponding
filter-banks is a well-known fact [25].

From time-frequency representations like wavelet analysis
[29] and the Wigner Ville representation [30] the STFT
respectively the Gabor transform has been chosen as it is a
linear transformation and fast algorithms directly connected
to the frequency domain are available.

1) Synthesis:In order to perform modifications of a signal,
a analysis system as well as a synthesis system is needed.
The continuous STFT has an inverse, but it cannot be handled
efficiently as it involves weak integrals. A series expansion,
like in the case of Fourier series, would be much more
desirable, both as a model and in an algorithmic sense. So
a Gabor transform is used. If theGabor systemG(g,H, ω0)
forms a frame, then every function is represented as infinite
but discrete linear combination:

f(t) =
∑

k,l∈Z

STFTg(f)(k ·H, l · ω0) ·
(
e2πilω0tg̃(t− k ·H)

)

for the canonical dual window̃g. Contrary to the Fourier trans-
form the Gabor transform with a good time-frequency concen-
tration cannot fulfill a orthonormal basis property, which leads
to a conceptional difference between these two concepts. In
particular synthesis coefficients are not unique anymore, and
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perfect reconstruction can not always be achieved by using the
same elements for analysis and synthesis. The Gabor frame
theory provides a method to calculate a perfect reconstruction
window and there are several algorithms available to do that
in an efficient way [31], [32].

2) Gabor Filters: Time-invariant filteringhas been used
for many years [33]. This technique transforms the signal
into the frequency domain and multiplies the spectrum with
a fixed function. A generalization of this procedure istime-
variant filtering, which has attracted more and more attention
in the past years. Gabor multipliers, calledGabor filters
in terms of signal-processing [19] ortime-frequency masks
in computational auditory scene analysis [34], are particular
cases of time-variant filters. The signal to be processed is
transformed into the time-frequency domain, the resulting
coefficients are multiplied by a function on the same domain
and the result of this multiplication is resynthesized. More
formally, we can define [35], [18]:

Definition 1: Let G(g,H, ω0) be a Gabor frame. For a
bounded sequence(m(k,l)) of complex numbers, called the
symbol, the Gabor multiplieror Gabor filter G is defined as
the operator

Gf(t) =
∑

k,l∈Z

m(k,l)STFTg(f)(k·H, l·ω0)·
(
e
2πilω0t

g̃(t − k · H)
)

.

Other possibilities to define and implement time variant
filters, among them the Zadeh and Weyl Filter [19], have been
considered. Finally the advantages of a Gabor filter are the
following [19] :

(i) Easy implementation; the Gabor coefficients are multi-
plied and then resynthezised.

(ii) Computational efficiency compared to full STFT filters.
(iii) Easy interpretation in the time-frequency plane; the

complex values at the time-frequency sampling points
are simply multiplied.

(iv) Small time-frequency spread; only small time-frequency
shifts are introduced with accordingly chosen windows
(i.e. it is an underspread operator). This property can
be improved, if the redundancy (see Section II-B4) is
increased.

3) Discrete, Finite-Dimensional Data:Regarding the cur-
rent application finite dimensional, discrete signals of
length n are considered only, such as vectors denoted by
x = (x0, x1, . . . , xn−1) ∈ Cn. These vectors are re-
garded as periodic functions onZ (with period n), so
xi+k·n = xi for all i, k ∈ Z. In this case, the
modulation and time shift operators are discretized, i.e.,
Tlx = (xn−l, xn−l+1, . . . , x0, x1, . . . , xn−l−1) and Mkx =(
x0 ·W 0

n , x1 ·W 1·k
n , . . . , xn−1 ·W (n−1)k

n

)
with Wn = e

2πi
n .

As all vectors are periodic, the translation is a cyclic operator.
In applications, as the one presented here, such vectors are
normally samples of a continuous function. The indices cor-
respond to the number of samples, so in this setting no units
have to be used.

The convolution of two vectors inCn is defined by

(x ∗ y)k =

n−1∑

i=0

xi · yk−i.

As we regard all vectors as periodic, this is the cyclic con-
volution. The discrete Fourier transform convolution of two
vectors corresponds to the element-wise multiplication oftheir
discrete Fourier transform̂x ∗ y = x̂ · ŷ, where we denote the
Discrete Fourier Transformation (DFT)again byx 7→ x̂.

We will consider the Gabor systemG(g, a, b) ={
MbnTakg : k = 0, . . . , ã;n = 0, . . . , b̃

}
for the window g.

The parameters,a andb, are restricted to be factors ofn such
that the numbers̃a = n

a and b̃ = n
b are integers. That is

equivalent to sampling with periodT and settingω0 = b
nT

andH = aT . Note thatb̃ denotes the number of frequency
bins, written as̃b = NFFT . In the discrete, finite-dimensional
case, the Gabor frame operator has a special structure, the
matrix S is zero except in everỹb-th side-diagonals and these
side-diagonals are periodic with perioda. This property can
be directly seen by using theWalnut representation[36] of the
Gabor frame matrixS = (Sp,q)n,n:

Theorem 2:

Sp,q =





b̃
ã−1∑
k=0

gp−ak · gq−ak for p− q ≡ 0 mod b̃

0 otherwise

.

In this setting the Gabor transform at the samplel and the
frequency bink can be written as:

Gab(x)l,k = STFTg(x)la,kb =

n∑

m=1

xmgm−lae
−2πikm
NF F T .

In this paper we also want to stress the formal distinction
between Gabor transform and the full STFT even for the
discrete caseCn. The STFT can be seen as a limit case of
the Gabor transform fora = b = 1 (samples).2 The discrete
STFT is always invertible with any window which is not
perpendicular to the original one, in particular for standard
windows (with positive values) this is always possible. For
a Gabor transform a frame condition has to be checked
to guarantee perfect reconstruction. Furthermore not every
window allow reconstruction.

For the full STFT, although no weak integrals have to be
considered as in the continuous case, it is still numerically
infeasible as it involvesn2 data points. Using the Gabor
transform the data points are reduced ton2

ab . In case of small
a and b still ‘too many’ data points have to be dealt with, in
the sense described in the next point:

4) Redundancy:In practice of analysis-synthesis systems,
reducing the amount of computation is essential, which means
reducing theredundancyof the representation. The redundancy
for a discrete Gabor transform is given byred = n

a·b = NF F T

a .
compared to the limit case of the discrete STFT wherered =
n
1·1 = n. This motivates why this value is called redundancy,
as a signal of lengthn is represented by the STFT withn2

data points.
Only if the Gabor system forms a frame the frame expansion

can be applied to obtain perfect reconstruction. Gabor [37]
proposed that in the case of Gaussian windows the redundancy

2This distinction is not always made. Sometimes the Gabor transform is
also called a STFT, even ifa 6= 1 and b 6= 1.
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could be reduced tored = 1. It can be shown that the
Gaussian windows constitute aframe for red > 1 [28].
The question if certain windowing functions form frames for
certain redundancies has already been answered for many
systems. It is clear that there is a kind of"Nyquist criterion"for
Gabor frames, as it has been shown that no window function
can be a frame forred < 1 [28].

Another approach to the concept of redundancy could be
taken to include a perceptual viewpoint. If one is interested
in perceptual feature extraction, any part of an audio signal
that cannot be heard can be considered as redundant. If the
signal is reduced to the perceptually relevant parts only, the
representation can be made more sparse, compared to the
perfect reconstruction scheme.

C. Physiological Background of Masking and Irrelevance

An comprehensive review of the physiology of the auditory
system and psychoacoustics can be found in [38] respectively
[3]. Sound waves arriving at the ear spread through the ear
canal, pass the middle ear, and finally reach thecochlea. The
mechanical vibrations are transformed into electrical action
potentials to be transmitted to the brain via the auditory nerve.
The transformation is performed by the hair cells located on
the basilar membrane (BM), whose vibration pattern resembles
a traveling wave, moving from the oval window to the apex of
the cochlea. Maxima of vibration occur near the oval window
for high-frequency tones and near the apex for low-frequency
tones. This correspondence of frequency to place on the basilar
membrane is calledtonotopy. Physiological measurements of
basilar membrane motion and auditory nerve activity have
shown that the frequency of a pure tone is encoded tem-
porally as well as tonotopically. Therefore, different spectral
components of a broad-band signal end up in different neural
channels of the auditory nerve.

The frequency selectivity of the auditory system, i.e. the
ability to separate closely spaced frequency components, is
limited. This can be understood by considering the activation
pattern of the basilar membrane caused by a sinusoid. This
so-called excitation pattern has the maximum at a specific
place along the BM and decays towards both sides (see Figure
3). This implies that the sinusoid activates also neighboring
areas at the BM. The slopes of the excitation pattern depend
nonlinearly both on the absolute frequency and the amplitude
of the signal. With increasing frequency region the spacing
between the characteristic places in mm corresponding to a
given frequency distance in Hz decreases [39]. The slopes of
the excitation pattern in BM deflection per tonotopic distance
(both in mm), however, are constant as a function of signal
frequency.

Psychoacoustic frequency scales have been derived exper-
imentally, reflecting the nonlinear mapping function of the
signal frequency. The so-called Bark scale function3 can be
expressed analytically [41] as

b(fkHz) := 13 tan−1(0.76 · fkHz) + 3.5 tan−1(
fkHz

7.5

2

), (2)

3Another well-described scale is the so-called Equivalent Rectangular
Bandwidth, ERB scale (e.g. [5]). The two scales are conceptually similar.
see e.g. [40]

wherefkHz is the frequency in kHz. In a first approximation,
the Bark scale resembles the tonotopy (refer to Figure 1).

Fig. 1. The Bark scale: plot corresponding to Equation 2

Applying the Bark scale, the slopes of the excitation pattern
of a sinusoid are constant as a function of the absolute
frequency. This scale is based on the concept ofcritical bands
in audition, which is related to the auditory filters. A basic
definition of the critical band states that spectral components
interact fundamentally differently within a critical bandthan
across critical bands.

D. Masking

Masking refers to the process by means of which the
threshold of audibility for one sound (the target) is raised
by the presence of another sound (the masker). Masking
can render the masked sound inaudible. Masking occurs in
two main signal configurations; simultaneous occurrence of
target and masker is referred to assimultaneous, frequencyor
spectral masking[3]; non-simultaneous occurrence of target
and masker is referred to astemporal masking, e.g. [42].

Real-world sounds are broadband and therefore involve
mutual masking effects between the individual narrow-band
components into which the signal can be decomposed. This
raises the question how the masking effects of more than
one simultaneous masker on a target add up. To a first ap-
proximation, the masked thresholds elicited by two individual
maskers have to be added linearly in the power domain to
derive the combined masked threshold [12]. For two equally
effective maskers this means that the masked threshold in the
presence of both maskers is 3 dB higher than that for one
masker alone. This rule may apply if side effects are ruled
out, such as the detection of cochlear combination products,
the detection of the target at a tonotopic place aside from the
target frequency (so-called off-frequency listening: [43]), or
listening for the signal in minima of the temporal envelope of
the masker [12], [13], [44]. In many configurations, however,
the additivity of masking can be larger than according to
the linear addition rule; in [44] it has been shown that for
spectrally non-overlapping maskers nonlinear additivityis the
rule. Furthermore, little is known about the additivity of
masking for more than two maskers [45].
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Another effect complicating the prediction of masking ef-
fects for real-world sounds is that the auditory system inte-
grates signal information across frequencies to detect a signal.
As an example, for two simultaneously presented sinusoids
equally contributing to detection, the masked threshold per
sinusoid is about 2.5 dB lower than the masked thresholds
for each sinusoid alone [14]. This implies that two (or more)
spectral components of a broad-band signal may be audible
even if each of them separately is below the masked threshold.
In addition, the maximum bandwidth up to which spectral
integration is efficient depends on the signal duration [14].

Furthermore, mutual suppression effects between individual
spectral components of a sound may reduce the effective
masking effect evoked by those components [46].

E. Masking Models

In psychoacoustics, two types of models have been devel-
oped that attempt to predict simultaneous masking. The first
type are excitation pattern or loudness-based models. These
models, in their initial formulation, transform a spectrally
defined (thus stationary) signal into an excitation pattern[5].
This approach goes back to the power-spectrum model of
masking [47], in which the auditory periphery is conceived
as containing a bank of bandpass filters. Masking is then
determined by the target-to-masker ratio at the output of the
filters. The target is masked if this ratio does not exceed a
certain value. Based on this basic approach, in [6] a method
has been proposed to predict masking for arbitrary stationary
maskers. In [7] this method was used to predict different
psychoacoustic measures of simultaneous masking. The only
moderate success of this model was attributed mainly to
the fact that it does not represent the nonlinear behavior of
auditory processing. Variants of this excitation-patterntype of
models, intended to predict loudness perception, have been
proposed (e.g. [48], [49]). They allow to predict the audibility
of a sound in the presence of another sound by the assumption
that audibility occurs at a fixed partial loudness. Still another
variant of this model type was designed to predict audibility
discrimination thresholds for spectral envelope distortions in
vowel-like sounds ([50]).

The second type of models ([51], [52], [53], [54], [55])
attempts to simulate the effective signal processing in the
auditory system. These models are intended to predict any
more peripherally-located auditory effects. The main focus of
the family of models presented in ([51], [52], [53], [54]) is,
however, on the modeling of masking effects. The last version
([54]) consists of outer- and middle-ear transformations,non-
linear cochlear processing, hair-cell transduction, a squaring
expansion, an adaptation stage, a low-pass modulation filter, a
bandpass modulation filterbank, a constant-variance internal
noise, and an optimal detector stage. The optimal detector
stage represents a decision process, where a stored temporal
representation of the signal to be detected is compared with
the actual activity pattern. Note that the main difference to the
excitation pattern-based models, besides the apparent diversity
of the processing stages included, is the implementation of
the decision process. The optimal detector allows the model

to use a priori knowledge about the target in the detection
stage, which appears to reflect the underlying process in a real
observer. The model is able to accurately predict the resultof
a large variety of simultaneous and non-simultaneous masking
experiments.

In summary, there exist several models that can predict the
auditory masking effect. But as mentioned in the introduction
a the specific goal of the irrelevance algorithm requires a
modified approach, which is described in the next section.

III. T HE IRRELEVANCE FILTER ALGORITHM

The aim of the proposed algorithm, whose outline is shown
in Figure 2, is to remove any components of a music or speech
signal which do not contribute to the perception of the sound
after resynthesis, i.e. which areperceptually irrelevant. This
implies that the masking effect of each component on every
other component has to be considered. In the introduction
section we presented arguments why a model which just
removes those components that are subject to masking will
not lead to satisfactory results, even if a sophisticated masking
model, like the ones presented above, is used. Thus, the
current problem required the definition of a new threshold
function, fulfilling the following conservative criterion: those
components whose amplitudes do not exceed the threshold
function can be removed while resulting in no perceptual
difference to the original sound. Note that the conventional
masked threshold function determines which components are
masked whereas the new threshold function determines which
components can be removed while causing no audible effects.

This new threshold function, referred to asirrelevance
threshold, contains a level offset parameter whose optimal
setting has been determined in an perceptual experiment with
36 subjects. The level offset allows to cope with uncontrolled
effects associated with removing components from a sound.
In addition, it allows to manage inaccuracies in the masking
model applied, which is simple and unlikely to predict accu-
rately the complex and nonlinear effects involved in masking,
particularly in multi-component stimuli. The realizationof the
concept of the irrelevance threshold is described below.

A. The Spreading Function

The term spreading function is used here to functionally
describe the spread of excitation induced by a sinusoid on the
BM in the Bark scale [56]. An approximation of the spreading
function is a triangle-like function (in the Bark scale with
logarithmic amplitudes), see Figure 3. It was used in [20]
to formulate a simple model of simultaneous masking and
approximated by the function

B(ω) = 13.94+1.5 · (ω + 0.03)− 25.5 ·

√
0.3 + (ω + 0.03)2 (3)

as a combination of two other models found in [56] and
[57]. More general, the shape of the spreading function can
be modeled by three parameters: the lower frequency slope
l and the upper slopeu (giving the absolute slope of the
left respectively right part of the function indB/Bark), as
well as a non-negative parametere that allows to control the



PERCEPTUAL SPARSITY BY SIMULTANEOUS MASKING 7

Fig. 2. The main stages of the irrelevance algorithm. The plot inserted into
the graph shows a signal spectrum and the calculated irrelevance threshold.
Time-Frequency components whose integrated level within aGabor-bin falls
below the irrelevance threshold are filtered out.

smoothness of the function at point zero. This parameter is
introduced, as the model should predict the smooth excitation
pattern of the BM for a single sinusoid. The function

F (x) =
l − u

2
· x− l + u

2
·
√
e+ x2 (4)

is used as shape function. As

F ′(x) =
l − u

2
− (l + u) · x

2 ·
√
e+ x2

, (5)

we get lim
x→∞

F ′(x) = −u and lim
x→−∞

F ′(x) = l as expected.

In [20] the maximum of this function,(xmax, ymax) is found
approximately, but can be calculated analytically as

xmax =

√
e

lu
· l− u

2
, ymax = −

√
e · u · l.

A new functionB(x), the spreading function, is built, such
that the maximum is shifted to the point(0, 0).

B(ω) = F (ω + xmax) − ymax. (6)

Settingl = 27, u = 24, e = 0.3 in Equation 6 (according to
[56] respectively [57]) leads to Equation 3. These parameters
have been used in the perceptual experiments described in
Section III-D. Note that we included no level-dependency of
the spreading function since we wanted to avoid the calibration
of the input signal. In the implementation inSTX [21] vary-
ing these parameters allows an heuristic estimation of their
influence on the algorithm.

Furthermore, a new functionB0(ω), called thespreading
threshold kernel, is introduced. For a givenǫ > 0 we set

B0(ω) =

{
−∞ ω ∈ (0 − ǫ/2, 0 + ǫ/2)
B(ω) otherwise

. (7)
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Fig. 3. The spreading functionB(ω) in the Bark domain. Here the parameters
(l = 27, u = −24, e = 0.3) are used.

B. The Irrelevance Function

This spreading function is used for the calculation of
a threshold function, the irrelevance function,Il,k, in the
following way.

1) Calculate the square of the absolute values of a Gabor
transform of the signalx, |Gab(x)l,k|2.

2) Transform the columns, power spectra of the signal at
regular temporal intervals, into the Bark scale.

3) Convolve with the involuted4 spreading threshold kernel
B0(ω) in the Bark domain. Transform back into theHz
scale. Denote this, see also Appendix A, by

(
|Gab(x)l,.|2

(b)∗ B0(−.)
)

k

.

4) Weight the result by the relative bandwidth100CB(ξ) at
the corresponding frequency bin, whereCB(ω) is the
critical bandwidth, see Eq. 9.

5) Shift the result (in dB) by an level offset parametero to
get the irrelevance functionI.

Il,k =

100

CB
(

k·b
NF F T

) ·
(
|Gab(x)l,.|2

(b)
∗ B0(−.)

)

k

10o/10

6) UseI as a threshold function to get the symbol for a
Gabor filter.

ml,k =

{
1 if Gab(x)l,k ≥ Il,k

0 otherwise
.

Apply the Gabor filter on the signal.
More details on each step are provided in the following.

1) Gabor Transform:The current algorithm uses aHam-
ming window of lengthNwin, i.e.

gk =

{
0.54 − 0.46 cos

(
2π k

Nwin−1

)
0 ≤ k ≤ Nwin − 1

0 otherwise
(8)

A Gabor analysis is performed with the time shifta = Nwin

8
andNFFT ≥ Nwin frequency bins. This corresponds to the
“painless non-orthogonal expansion”[28] and ensures that
the Gabor transform can be computed efficiently. For the

4Involution means mirroring around0, i.e. flipping: f̃(x) := f(−x).
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continuous case it can be shown that the Hamming window
always forms a tight Gabor frame for any hop sizeH = Nwin

2η

for any η = 1, 2, . . .. This is not true for the sampled
version of this window as in Eq. 8 , because the typically
chosen boundary conditions, i.e. that the window has the same
value at0 andNwin − 1, does not support this in the finite
dimensional case. But this half-point symmetrical window is
typically used in applications. Nevertheless it would allow a
more intuitive interpretation of the time-frequency coefficients,
if the same window is used for analysis and synthesis. Also,
to avoid the calculation of a dual window, we show that
the discrete Gabor system forms a snug frame in the finite,
discrete case. With a redundancy of8 using Theorem 2 it
can be shown that the Gabor matrixS is a diagonal matrix
with a (nearly) constant diagonal (for the parameters used in
the experiment, see Section III-D1 up to a relative error of
ǫ = 4.0090 · 10−5). This is an acceptable value, so the perfect
reconstruction can be obtained up to a very small error if the
same Hamming window is also applied as synthesis window,
with an appropriate scaling (1/810.7694 for the parameters
used in Section III-D1). So this window forms a snug frame.

2) Hz-to-Bark Transform:The transformation of the signal
spectrum from the linear into the Bark frequency domain,
Hz → Bark, is performed according to a point-wise relation.
For that purpose a fixed grid in the Bark scale is defined,
with NBark bins. For every FFT-bin the nearest Bark bin
corresponding to its Hz value is chosen and set to this value.
Components not corresponding to FFT-bins are set to zero.
This means that the number and values of the non-zero bins
in the Bark scale correspond to the number and values of the
associated FFT-bins. The number of bins in the Bark domain
is chosen high enough, such that the resolution is always better
than on theHz scale, i.e. this transformation is one-to-one.

This point-wise relation can be seen as corresponding to a
sinusoidal synthesis model and was chosen to be comparable
to [57], which motivated the choice of the values foru and
l. This choice for the transformation can also be found, for
example, in the explanation of masking effects in [4].

3) Spreading by Convolution:The convolution can be
implemented very efficiently using the FFT in an overlap-
add (OLA) approach [33], applying zero-padding to avoid
the aliasing effect due to circular convolution. A convolution
model of auditory masking assumes linear additivity of mask-
ing in the power domain, i.e. linear summation of energy.
Although power-law additivity may be more appropriate in
certain signal and masker configurations [13], [12], [44],
linear additivity gives a conservative estimate of the masking
effect. Using convolution implies that all components, even
those which may fall below the absolute or masked threshold
function, are taken into account. This step is based on the
assumption that even sub-threshold components may con-
tribute to the combined masking effect. As seen in Equation
7 the spreading threshold kernelB0(ω) is zero (on the linear
scale) or negative infinity (on the logarithmic scale) within the
interval (0− ǫ/2, 0+ ǫ/2). This reflects the assumption that a
given frequency component cannot influence the irrelevance
threshold at the same frequency position. In the algorithm
ǫ > 0 is set to the resolution of the discrete frequency analysis

(FFT).
4) Weighting by Relative Critical Bandwidth:It can be

shown, see Appendix A, that the spreading function calculated
by convolution and using appropriate weightings is equivalent
to the excitation pattern calculated according to the method
described in [6].

The excitation pattern of a signal with constant amplitude
and constant spectral density (e.g. a harmonic complex with
equal amplitudes) grows with increasing frequency [5] due to
the broadening of the auditory filter. This effect is modeled
by the assumption of the shift-invariance of the spreading
threshold kernelB0(ω) in the Bark domain, as this implies
a broadening of this kernel in the Hz domain. Furthermore,
there is an effect caused by the change in the spectral density
as a function of frequency. By the one-to-one approach for the
Hz to Bark transformation, the spectral density is increasing
with frequency in the Bark domain. As the resulting function
is used as a threshold function the rising tilt has to be avoided,
because it would result in overly masking of higher frequency
components. Therefore, the threshold function is weighted
by the relative critical bandwidth100/CB. This corresponds
to using the same weighting function only in the backward
direction, see Appendix A. The resulting function is referred
to asmasked threshold function. The formula for the critical
bandwidth [41] is given by:

CB(ω) = 25 + 75 ·
(
1 + 1.4 · 10−6 · ω2

)0.69
. (9)

The masked threshold function is transformed to the Hz scale,
again on a one-to-one basis.

5) Shifting by Offset:Finally, the masked threshold func-
tion is shifted in dB level according to an offset parameter
o. The appropriate choice of the offset parameter ensures that
any uncontrolled effects of signal processing and properties of
masking not accounted for by the described masking model
are coped with. The determination of the offset value is based
on a conservative criterion derived from the perceptual tests
described below, including a variety of real-world test stimuli.
Finally, the shifted threshold function is called theirrelevance
threshold.

6) Gabor Filter by Thresholding:The simultaneous mask-
ing algorithm is implemented as an adaptive filter. The irrel-
evance threshold function is calculated for each consecutive
spectrum of a running signal. Only the components exceeding
the threshold are included in the re-synthesis stage. This step
is equivalent to multiplying each time-frequency point by0 or
1. Fig. 4 shows the perceptually relevant TF components.

This procedure is an example of a Gabor filter with a symbol
consisting of zeros and ones. First theirrelevance thresholdis
determined based on the signal, which is clearly an adaptive
and therefore non-linear process. The filtering stage itself,
a time-variant filter, is a linear process again. Introducing
this model, the underspread property (see Section II-B2) is
important, since the induced time-frequency shift should be as
‘local’ as possible. The approximation process, in which only
single time-frequency points are removed from the signal, was
performed as accurately as possible. The goal was to obtain
an operator with good time-frequency localization, i.e. an
underspread operator [58]. To achieve that goal and following
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Gabor theory, a high redundancy has been chosen,red = 8.
At high redundancy, short on/off cycles of single components
that are close to the irrelevance threshold are smoothed out,
which is desirable from a psychoacoustical point of view as
sharp on/off edges cause audible artifacts.
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Fig. 4. TOP: The spectrogram of test signal ’bach’ (classical music by J.
S. Bach), high amplitude is displayed brightly, low darkly;MIDDLE: The
symbol of the Gabor filter for the irrelevance filter, white= 1, black = 0.
BOTTOM: The result of the point-wise multiplication of these two sets of
coefficients, representing the amplitude of relevant components.

C. Numerical Complexity

Using a simple linear model, a convolution and a simple
thresholding approach leads to a fast algorithm: For a signal
of lengthn with hop sizea we get n

a spectra in the Gabor
transform. For each of these spectra we have the following
calculations:

1) Gabor transform:O(NFFT · log(NFFT )).
2) Hz-to-Bark transform:O(NBark).
3) Spreading by convolution:O(NBark · log(NBark)).
4) Weighting by Relative Critical Bandwidth:O(NBark)
5) Bark-to-Hz transform:O(NBark).
6) Shifting by Offset:O(NFFT ).
7) Thresholding:O(NFFT ).
8) inverse Gabor transform:O(NFFT · log(NFFT )).

As NBark ≥ NFFT for the whole signal we have an
estimation of the number of operations by

O(
n

a
·NBark · log(NBark)).

D. Experimental Evaluation of the Proposed Algorithm

The algorithm was evaluated in a listening experiment [20].
The aim was to find the value of the free parametero,
determining the level offset of the threshold function, for
which normal hearing listeners cannot detect any difference
between the processed signal and the original for a broad
range of signals. The higher the level of the threshold function,
the more spectral components fall below the threshold and
are filtered out. Foro = 0, the threshold function is not
shifted. Positive and negative values ofo correspond to upward
and downward shifts in level, respectively. A downward shift
of the threshold function allows to account for potential

overestimation of masking effects, either due to inaccuracies
in the masking model, e.g. due to spectral integration in signal
detection, or due to unpredictable effects associated withthe
removal of components.

1) Method: Thirty-six normal hearing subjects completed
the experiment. The majority of them were students of the
University of Vienna. The test stimuli were derived from 25
music recordings, covering a wide variety of musical styles
and musical instruments, and one speech recording obtained
from a female news speaker. From each of the 26 sounds,
segments with three different durations (300, 600, and 1200
ms) were extracted. Linear ramps with a duration of 90 ms
were applied. The segment borders were determined pseudo-
randomly within a preselected range. Segments for which the
random process led to truncation of musical phrases were
discarded.5 The sound level of the stimuli was set to yield
a comfortable loudness. The stimuli were stored on computer
hard disc and output via a DAC converter (Siemens, ADC
16/12-15), an amplifier (Kenwood KA-7100), and a circum-
aural headphone (AKG K 240 DF). Only the right channel
of the recordings was presented to the subjects. The subjects
were seated in a double-walled sound booth (IAC 1202A). The
sampling frequency of16 kHz and a digital word length of 16
bit was used.

Based on the results of pilot tests, four processing condi-
tions were selected for the main tests (Table I): Condition1
represented the original (unprocessed) signal. Conditions 2, 3,
and4 corresponded to the values of the parametero (the level
offset) −6.59, −4.59 and−2.59 dB, respectively. Condition
1 corresponded too = −∞.

Condition Offset o
1 −∞ dB
2 −6.59 dB
3 −4.59 dB
4 −2.59 dB

TABLE I
THE FOUR CONDITIONS TESTED IN THE PERCEPTUAL EXPERIMENT. THE

dB VALUES SPECIFY THE LEVEL OFFSET PARAMETERo.

The offset parameter values were chosen to encompass the
transition from chance rating to significant discrimination. All
other parameters of the algorithm were held constant:

sampling rate 16 kHz
window lengthNwin 256 samples
FFT lengthNF F T 256 samples
hop sizea 32 samples
lower slope of the spreading functionl 27 dB / Bark
upper slope of the spreading functionu 24 dB / Bark
damping factore 0.3
length of Bark scaleNBark 512 samples

Each of the 26 sounds was presented once at all com-
binations of three durations and four processing conditions,
resulting in a total number of 312 test stimuli.

A double-paired comparison task was used to obtain percent
scores on the discriminability between original and processed

5This was intended to introduce a kind of controlled randomness into the
selection process.
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stimuli. This task represents a four-interval, two-alternative
forced-choice procedure. One pair contained two identical
stimuli (the original signal) and the other pair contained
the processed signal and the original. The temporal position
of the processed condition within the four possible signal
intervals was randomized. The subjects had to indicate which
pair contained different stimuli. The subjects were allowed to
repeat the stimulus five times at maximum before giving a
response. The stimulus intervals were indicated visually on a
computer screen. Visual feedback on the correctness of the
response was provided after each trial by indicating if the
correct pair was chosen. The inter-stimulus interval of each
pair was 0.5 s and between the two pairs 1 s. The order
of stimulus conditions was randomized and the same order
was used for all subjects. The stimuli were split into two
blocks, each lasting about 40 minutes. Before the start of
data collection, a practice period of maximally 25 items was
completed.

2) Results: The mean percent correct scores for the four
processing conditions at each of the three durations are shown
in Fig. 5. The error bars show 95% confidence intervals
around the mean scores across the 36 subjects. A two-
way repeated-measures analysis of variance (RM ANOVA)
(factors: processing condition, duration) was performed.The
percent correct scores were transformed using the rationalized
arcsine transform proposed in [59] to not violate the homo-
geneity of variance assumption required for an ANOVA. The
RM ANOVA showed that the main effects were significant
(processing condition: p < 0.0001; duration: p = 0.002) as
well as their interaction (p = 0.036). Tukey HSD post-hoc tests
revealed differences to be significant between all combinations
of processing conditions except between conditions 1 and 2.
The main effect of the factor duration (and its interaction
with the factor processing condition) was found to be caused
by significant differences between durations 0.3 vs. 0.6 s for
processing condition 3 and by significant differences between
durations 0.3 vs. 1.2 s and 0.6 vs. 1.2 s for processing
condition 4. Thus, there were significant improvements with
increasing duration, but only for conditions 3 and 4.

The obtained percent correct scores are binomially dis-
tributed. To obtain a statistical measure, if a particular score
represents sensitivity of the listener to discriminate theoriginal
from the processed sound (H1) or falls into the range of chance
performance (H0), a test based on the binomial distribution
is required. For each subject and processing condition there
were N = 3 · 26 = 78 trials. SinceN > 60, in which
case the binomial distribution can be approximated by the
normal distribution, theu-test can be used to determine the
probability that a given score is obtained by chance. In the
specific case, we calculated the minimum score which has
to be obtained to exceed chance performance at the given N
of 78. Scores exceeding 64.1 and 60 percent correct indicate
discrimination performance above chance at alpha levels of
0.01 and 0.05, respectively. Table II depicts the percentage
of subjects for which this was fulfilled for each of the four
processing conditions. In case of condition 1, no subject
exceeded the range of chance performance and for condition
2 one subject just reached the 5 percent significance level.

However, obtaining one significant result in 36 test repetitions
with an alpha level of 5 percent is likely to occur by chance. In
case of condition 3,36.1 percent of the subjects reached the 5
percent and19.4 percent reached the 1 percent significance
level. In case of condition 4,75 and 61.1 percent of the
subjects obtained significant scores at the two significance
levels, respectively.

To obtain a statistical measure of sensitivity for the sam-
ple of subjects as a whole, the mean percent correct score
across all subjects was analyzed for each test condition. For
N = 36 · 3 · 26 = 2808 trials, theu-test reveals that scores
exceeding 52.5 and 51.9 percent correct indicate discrimina-
tion performance above chance level (alpha levels of 0.01 and
0.05, respectively). As can be seen in Table II the performance
exceeds these critical values for condition 3 and 4, but not
for conditions 1 and 2. The aim of the experiment was to
find the highest value ofo for which the listeners could not
discriminate the processed from the original signal. Hence,
condition 2 is considered as the irrelevance threshold. Please
note that the term irrelevance threshold refers to a signal
processing function and not to a psychophysical threshold.

For condition 2, 35.8 percent of the Gabor coefficients,
on average across all stimuli and windows, fell below the
irrelevance threshold and hence were set to zero. The standard
deviation of the percentages across the stimuli was 8.5 percent.
No absolute hearing threshold criterion was applied for the
calculation of these percentages. This means that it is possible
that a portion of the discarded coefficients fell below the
absolute threshold of hearing. Only a small percentage of
the signal energy has been removed (depending on the signal
between 0.2 and 1.2 %, statistically 0.47± 0.26 %). Please
note that not only the components with the lowest amplitudes
were removed.

Fig. 5. Percent correct discrimination scores obtained from the perceptual
experiment for the four signal processing conditions and three signal durations.
The error bars show 95% confidence intervals around the mean values across
the 36 listeners.
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Processing Condition
1 2 3 4

Mean % Correct Score 49.4 50.5 58.6 68.6

Percentage of subjects exceeding chance performance atp < 0.05 0.0 2.8 36.1 75

Percentage of subjects exceeding chance performance atp < 0.01 0.0 0.0 19.4 61.1

TABLE II
PERFORMANCE MEASURES OBTAINED FROM THE PERCEPTUAL EXPERIMENT. THE MEAN PERCENT CORRECT DISCRIMINATION SCORES ARE AVERAGED

OVER THE THREE SIGNAL DURATIONS.

E. Masking Pattern Simulation

In this section we use a simple simulation approach to
examine the appropriateness of the masking model to mimic
the basic simultaneous masking effect as revealed by the
simultaneous masking pattern. The simultaneous masking pat-
tern provides a measure of the spread of masking caused
by a narrow-band masker and is obtained by measuring
masked thresholds of narrow-band targets placed at different
frequencies around the masker. Both sinusoids and narrow-
band-noises have been used as maskers and targets in the
psychoacoustic literature and it has been shown that the
shape of the masking pattern depends on the specific stimulus
combination (e.g., [60]). For our simulation approach, both
the masker and the targets were sinusoids. We did not test
noise bands since the model is not designed to take into
account effects of temporal fluctuations. 300-ms masker and
target stimuli were fed into the algorithm and the resynthesized
signal was inspected with a discrete Fourier transform. The
masker frequency was 1000 Hz and 10 target frequencies
surrounding the masker were chosen, ranging from 250 to
4000 Hz. In order to simulate the masked threshold at a given
target frequency, the target level was systematically varied in
steps of 2 dB in a level region around the expected masked
threshold. For target levels above the irrelevance threshold,
a given decrease in target level results in the same level
decrease of the target in the resynthesized signal. As soon as
the target level falls below the irrelevance threshold, however,
the target is not resynthesized any more. Thus, by tracking the
amplitude in the FFT bins surrounding the target frequency,
we can determine the level of the target where it passes the
irrelevance threshold, and this level represents the simulated
masked threshold. Due to the properties of the analysis-
resynthesis system, there is, however, a transition regionwhere
the target level is increasingly dampened until it disappears.
Therefore, the masked threshold was defined as the input
target level at which the resynthesized target level was at
least 10 dB dampened relative to the input target level. This
procedure was performed for each target frequency. Note that
we did not simulate the condition where the target frequency
is equivalent to the masker frequency. The reason is that there
is no straight-forward way to simulate the masked threshold
for this condition.

Figure 6 compares the results of the simulated masking
pattern with psychoacoustically measured masking patterns
reported in the literature, using the same stimulus type and

masker frequency and a comparable masker level. Data from
the study of [60] are shown for a masker level of 65 dB
SPL and from the study of [61] for a masker level of 60
dB SPL. Note that [60] used a three-interval forced-choice
task whereas [61] used a Békésy tracking procedure. The
results of those two studies coincide well for the lower edge,
including the peak of the pattern. However, the upper edge of
the masking pattern from [61] is much flatter. The simulated
masking pattern was shifted in level to coincide with the two
psychoacoustically measured masking patterns at the lower
edge, thus where the data from those two studies themselves
coincide. There is good agreement of the simulated masking
patterns with the data from [60]. At very low levels, however,
the simulation does not show the flattening of the pattern that
appears in the data from [60]. For example, at target frequen-
cies of 500 and 1500 Hz the simulated masked thresholds fall
below zero sensation level (not shown) whereas the data from
[60] still yield 3 and 12 dB of masking, respectively. Never-
theless, the main part of the simulated masking pattern agrees
well with the masking pattern measured psychoacoustically
using a forced-choice task.

Fig. 6. Comparison between simulated masking pattern (filled triangles) and
psychoacoustically measured masking patterns redrawn from [60] (circles) and
[61] (squares). The sensation level (SL) of the target at threshold is shown as
a function of frequency. The data from [60] are mean values ofthree listeners
and include± 1 standard deviation of the mean; the data from [61] are mean
values of eight listeners.
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IV. D ISCUSSION

The results of the perceptual experiment showed that the
subjects could not discriminate the irrelevance filtered sound
from the original sound for a value of the level offset pa-
rametero of −6.59 dB. The transition from chance rating
to significant discrimination performance falls between the
processing conditions with offset values of−6.59 and−4.59
dB. These results suggest that the irrelevance threshold for
real-world signals can be obtained by convolution of the Bark-
transformed signal spectrum with a spreading function of
simultaneous masking and a downshift by about6.6 dB.

We observed improvements in discrimination scores for
increasing signal durations (ranging from 0.3 to 1.2 s) for
those processing conditions (3 and 4) that were discriminable
from the unprocessed sounds. The results indicate that using
signal durations larger than 0.3 s increases the probability to
discriminate the processed from the unprocessed sound. This
result is consistent with the idea that at longer signal durations
the auditory system has the advantage of observing more time
instances containing potential differences to be detected.

There is a general limitation of the approach to shift the
masked threshold in level until no difference can be heard
between the original and the processed signal. It does not allow
to evaluate the contribution of different signal components to
the perceptual degradation. For example, one frequency region
could have contributed more to the perceptual degradation
than other regions. This issue should be addressed in future
advancements of the algorithm. One possibility would be to
test the effect of the level shift of the masked threshold
function systematically in different frequency regions. Another
possibility would be to introduce an iterative approach, where
a model of auditory processing is applied after signal re-
synthesis and the auditory representation of that signal is
compared to that of the original signal. This would allow
to correct wrong decisions, i.e. the removal of either too
many or of too few components. Such an approach would
be, however, computationally expensive. In any case, the
current algorithm should be considered as a starting point
that hopefully motivates further advancements of the general
approach.

We examined the appropriateness of the proposed irrele-
vance filter algorithm to mimic the basic simultaneous mask-
ing effect by simulating masking patterns and comparing them
with data from two psychoacoustic studies from the literature
([60], [61]). But first, it is important to discuss the finding
that the data from these two studies agree at the lower edge,
including the peak of the pattern, but show a much flatter slope
at the upper edge in [61]. This could be due to the fact that
[61] used a Békésy tracking method whereas [60] used a three-
interval forced-choice task. The latter task allows the subjects
to “home in” on the optimal detection cue for each masker-
signal combination and thus may lead to lower thresholds.
As discussed in [60], the perception of combination products
and beats likely influenced the thresholds at the upper edge
of the pattern. Now turning back to the main comparison, the
simulated masking pattern was shown to agree well with the
pattern from [60] for the main part. Thus, the masking model

used in our study gives a conservative estimate of simultaneous
masking effects involved in sinusoidal stimuli.

Although there exist very sophisticated models that allow
one to accurately predict simultaneous masking effects (e.g.
[52], [54], [2]), no study is known to the authors that followed
the approach of our study, i.e. to remove time-frequency
components of a real-life signal while causing no audible
difference to the original signal. As has been outlined in
the introduction section, removing time-frequency components
from a signal involves special effects that are related to
the properties of time-frequency representations and to the
properties of the masking model. These effects were handled
by the introduction of a level shift of the masked threshold
function. Because of the specifity of our approach, it is not
possible to compare our results with results from published
masking models or perceptual audio codecs.

The masking model applied in our study was deliberately a
simple one, which does not consider complex and nonlinear
effects such as suppression [16], [17], nonlinear additivity
of masking for spectrally non-overlapping maskers [44], or
the level-dependence of auditory filters [6]. Furthermore,the
current masking model does not consider the dependence of
simultaneous masking on the temporal characteristics of the
stimuli. For example, the amount of masking differs between
tonal and noise maskers, depending on the fluctuation rate of
the masker [62], [4], and co-modulation of masker components
across frequency bands is known to cause release from mask-
ing, an effect that has been termed co-modulation masking
release [63]. Another effect not directly incorporated into the
current masking model is the across-frequency integrationin
signal detection [14], [15]. Removing more than one spectral
component could result in an audible change even if each of
the components separately falls below the masked threshold.
The result that the irrelevance threshold was found at a
negative value of the level offset parameter might indicatethat
across-frequency integration effects were involved. However,
it could also result from other inaccuracies of the masking
model or from uncontrolled effects resulting from removing
time-frequency components.

Some of the complex masking effects mentioned above
might have been involved in the present study. Incorporat-
ing them into the masking model might result in a higher
efficiency in terms of the number of removable components
and will be considered for future refinement of the algorithm.
In any case, the current approach for removing perceptually
irrelevant components provided a safe criterion. By level-
shifting the masked threshold function, the filter criterion, so
that listeners just heard no difference to the original signal,
some of those effects may have indirectly been taken into
account.

When interpreting the results it has to be kept in mind
that the stimuli used were dynamic in their spectral and
temporal characteristics. This could have made it difficultto
detect subtle sound differences at certain instances of time.
In case of steady-state stimuli such as harmonic complexes,
the irrelevance threshold might have been found at even lower
values of the offset parameter. For such stimuli, it may be
easier for listeners to focus their attention on specific spectral
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regions. A related aspect is that the subjects had no possibility
to improve their performance over time for the specific stimuli
since each stimulus was tested only once.6 If instead a small
number of stimuli had been presented repeatedly, it might
have been easier for the subjects to detect slight differences
since they would have been familiarized with the cues to be
detected. While these issues are interesting for future studies, it
is important to note that the stimuli and procedures used in this
study were selected to represent realistic listening situations.
We think that due to the relatively broad range of sounds used
in the experiments the results should be generalizable to other
real-life music and speech sounds.

The high redundancy in the analysis-synthesis system re-
sults in smoothing and thus reduces the efficiency of the
algorithm. Components whose levels vary around the irrel-
evance threshold from one analysis interval to the next are
not completely removed. To obtain a true on/off switching,
the redundancy would have to be very low (near1), but as
a consequence the loss of localization in the time-frequency
plane would have to be accepted. Therefore, the smoothing
in the resynthesis process appears inherent to time-variant
systems.

The main application of the described irrelevance filter lies
in removing perceptually irrelevant components from real-
world sounds in order to obtain more sparse and simple
frequency representations of perceptual relevance, to facilitate
the sound synthesis and design. Furthermore, it may ease the
interpretation of time-frequency properties of signal used in
perception-related tasks.

V. PERSPECTIVES

Several parts of the current algorithm could be improved.
For example, the high redundancy of the Gabor transform
could be reduced by using the canonical dual Gabor window
for resynthesis instead of relying on snugness. With the theory
of Gabor multipliers, i.e. Gabor filters, the window and the
parameters could be chosen such that the smoothing and un-
derspread property of the filter are kept for lower redundancies.
Furthermore sparsity is currently a prominent topic in signal
processing, e.g. under the designation “compressed sensing”
[64], [65], and we will look at a way to combine our approach
with that one.

There is large room for refinements of the simultaneous
masking model currently implemented in the algorithm. A
more accurate model of peripheral auditory processing may
increase the efficiency of the algorithm in terms of the amount
of removable components. Possible improvements based on
known and well-studied properties of auditory processing
include the inclusion of outer/middle ear transfer function
[6], the inclusion of the absolute hearing threshold, the level-
dependence of auditory filters [6], the nonlinear additivity of
masking depending on the spectral relations of the masker
components [44], spectral integration effects in signal detec-
tion ([14], [15], [11]), or the dependency of the amount of

6disregarding the optional stimulus repetition, that provided no response
feedback.

masking on the degree of tonality of the masker as well as of
the target [4], [62].

In the context ofGabor filters, ways to combine simul-
taneous masking and temporal masking will be explored to
extend the current algorithm to a truetime-frequency masking
algorithm. In [66], a basic model for a simple time-frequency
masking algorithm based on the algorithm presented here, has
been proposed. Work on an extension of the algorithm, the
evaluation of its applicability, as well as on basic psychoacous-
tic experiments on time-frequency masking using Gaussian-
shaped tones is currently underway [45].

ACKNOWLEDGMENTS

The authors would like to thank Matthew Goupell, Florent
Jaillet, Monika Dörfler, Solvi Ystad and the anonymous re-
viewers for helpful comments, Toni Noll for a lot of help
with implementations, Wolfgang Kreuzer for help with LATEX
and proofreading.

The first author would like to thank the hospitality of the
LATP, CMI and the LMA, CNRS, both Marseille, France,
where part of this work was prepared.

APPENDIX

A. Connection to the Excitation Pattern

The excitation pattern model[5], [6] uses the concept of
the auditory filter bank to calculate a model for the BM acti-
vation, theexcitation pattern. We will show that our spreading
function is equivalent to the excitation pattern. We denoteby
EP(f)(ω) the excitation pattern at frequencyω of a signalf
with Fourier transformf̂ . Let AF (η, ξ) be the auditory filter
as a function of the frequencyξ, with center frequencyη in
the power spectrum with maximum1. The excitation pattern
can be regarded as the response of the auditory filter bank
using power spectra, i.e

EP(f)(ξ) =
〈
f̂2(·), AF (ξ, ·)

〉
=

∫

R

AF (ξ, ν)f̂2(ν)dν. (10)

For further motivation consider a signal, which consists ofa
single complex sinusoid at frequencyν0 (i.e. f̂(ω) = δν0

(ω)).
Then

EP( ˇδν0
)(ω) = AF (ω, ν0). (11)

Compare this to the description in [5] p. 752.
In Equation 10 we can choose another frequency scale, in

our case the Bark scale (Equation 2). We want to represent
the formula in the Bark scale, using the notationf (b)(ω) =
f

(
b−1 (ω)

)
. Then let

EP
(b)
(f)(ω) = EP(f)(b

−1(ω)) =

=
∫
R

AF (b−1(ω), ν)f̂2(ν)dν.
(12)

Substitutingν = b−1(ζ) and using integration by substitu-
tion we get

EP
(b)
(f)(ω) =

∫

R

AF (b−1(ω), b−1(ζ))f̂2(b−1(ζ))
d b−1(ζ)

dζ
dζ



14 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING

where we denote the first derivative of a functionf(t) by
f ′(t) = df

dt (t).
The derivative of the functionb−1, i.e. the transformation

from the Bark to the Hz scale, can be approximated well by the
critical bandwidth.7 This is motivated in the following way:
LetCB(ω) denote thecritical bandwidthat (linear) frequency
ω, defined as the distance of the two linear frequencies
corresponding tob (ω) − 1

2 andb (ω) + 1
2 :

CB(ω) = b−1

(
b (ω) +

1

2

)
− b−1

(
b (ω) − 1

2

)
.

Using the mean value theorem this is equivalent to

CB(ω) =
(
b−1

)′
(ζ0) ·

(
1

2
+

1

2

)

for a ζ0 ∈
(
b (ω) − 1

2 , b (ω) + 1
2

)
. Applying Taylor’s theorem

to expandb−1 aroundb(ω) leads to the following approxima-
tion

CB(ω) ∼=
(
b−1

)′
(b (ω)) .

Therefore

EP
(b)
(f)(ω) =

∫

R

AF (b−1(ω), b−1(ζ))f̂2(b−1(ζ)) ·CB
(
b
−1 (ζ)

)
dζ.

(13)
For CB(b−1(ζ)) a good approximation by an analytical

formula is known, see Equation 9.
In the Bark scale all auditory filters can be approximated

by triangular functions having equal slopes at different center
frequencies. This means they are just shifted versions of a
shape function, denoted byAF(ω). Using the above men-
tioned translation operatorTτ this can be expressed as

AF (b−1(η), b−1(ζ)) = TηAF(b−1(ζ)).

Therefore the original formula can be simplified to:

Eq.13 =
∫
R

[
TωAF

(
b−1(ζ)

)]
f̂2(b−1(ζ)) · CB(b−1(ζ)) dζ =

=
∫
R

[
AF

(
b−1 (ζ − ω)

)]
·

(
f̂2(b−1(ζ)) · CB(b−1(ζ))

)
dζ.

Denote the involution byÃF(ω) = AF(−ω) and the
convolution in the Bark scale by

(
f

(b)
∗ g

)
(ω) :=

∞∫

−∞

f
(
b−1 (ω − ν)

)
· g

(
b−1 (ν)

)
dν.

Then 8

EP
(b)
(f)(ω) =

[
ÃF (b)∗

(
f̂2 · CB

)]
(ω) .

For the transformation back to the Hz scale we set

EP(f)(ξ) =
1

CB(ξ)

[
ÃF

(b)
∗

(
f̂2 · CB

)]
(b(ξ)) .

7For the very similar ERB scale [5] it can be easily shown that this relation
is exactly true for the analytical approximation of the ERB scale and the ERB
bandwidth [67].

8Notice thatb−1 is symmetric.

The weighting by 1
CB(ξ) is chosen to keep Eq. 11 valid,

because
∫

R

AF (b−1(ω), b−1(ζ))δb−1(ζ0)(b
−1(ζ)) · CB

(
b−1 (ζ)

)
dζ =

= AF (b−1(ω), b−1(ζ0)) · CB
(
b−1 (ζ0)

)
.

In conclusion, the calculation of the excitation pattern using
the auditory filter model is equivalent to a convolution model
in the Bark scale, using the critical bandwidth function as a
weighting factor twice, the originalCB in the forward and its
inverse in the backward frequency scale transformation.

B. Download

The masking algorithm is implemented inSTX [21],
a signal processing software system designed at the
Acoustics Research Institute of the Austrian Academy
of Sciences. The software can be downloaded at
http://www.kfs.oeaw.ac.at and a free trial license
can be obtained (for 3 months) by e-mail as explained on this
webpage.
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