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Introducing Time-Frequency Sparsity by Removing
Perceptually Irrelevant Components Using a Simpl

Model of Simultaneous Masking
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Abstract—We present an algorithm for removing time-
frequency components, found by a standard Gabor transform,
of a “real-world” sound while causing no audible difference to
the original sound after resynthesis. Thus this represent#on is

made sparser. The selection of removable components is bdse

on a simple model of simultaneous masking in the auditory
system. Important goals were the applicability to any real-
world music and speech sound, integrating mutual masking
effects between time-frequency components, coping with ¢h
time-frequency spread of such an operation, and computatiual
efficiency. The proposed algorithm first determines an estim-
tion of the masked threshold within an analysis window. The
masked threshold function is then shifted in level by an amont
determined experimentally, and all components falling bedw this
function (the irrelevance threshold) are removed. This sht gives
a conservative way to deal with uncertainty effects resultig from
removing time-frequency components and with inaccuraciesn

which are close in the time-frequency domain. Deleting ¢hes
masked and thus perceptually irrelevant components mhkes t
signal representation more sparse and the resynthesipeal si
would be expected to sound equivalently to the originalaign

A well-known technique to reduce the digital size of an
audio file, theMP3 audio codec [1], is based on a model
of human auditory perception. This and similar perceptual
audio codecs like AAC (see [2] for a review), allocate low
bit rates to frequency channels which are subject to masking
effects and thus have little or no perceptual relevances Thi
technique is very efficient in reducing the capacities rezli
for transmitting and storing audio files.

The goal of the algorithm presented here, referred to as the
“irrelevance filter”, is not to reduce the digital size of a sound.

the masking model. The removal of components is described asRather, its goal is to remove those time-frequency compisnen

an adaptive Gabor multiplier. Thirty-six normal hearing su bjects
participated in an experiment to determine the maximum shit
value for which they could not discriminate the irrelevance
filtered signal from the original signal. On average across he
test stimuli, 36 percent of the time-frequency componentsell
below the irrelevance threshold.

Index Terms—simultaneous masking; irrelevance filter; spec-
tral masking; sparse representation; Gabor filter; Gabor trans-
form; time-variant filter; efficient algorithm; masking mod el;
EDICS : AUD-AUDI Auditory Modeling and Hearing Aids, AUD-
ACOD Broadband and Perceptual Coding; AUD-ANSY Audio
Analysis and Synthesis

I. INTRODUCTION:

It is known in psychoacoustics that not all time-frequen
components of a “real-world” acoustic signal can be peeztiv
by the human auditory system. More precisely, it turns o
that some time-frequency components mask other compgne f's
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in a standard Gabor transform, whose removal causes no
audible difference to the original signal after resynthebiote

the difference to perceptual audio codecs; they use a low bit
depth and thus introduce quantization noise in frequenogéa
were the signal falls below the masked threshold. In coptras
in the proposed model we want to either keep a component or
remove it if irrelevant. Thus, we attempt to introduce “site”

in bands were the signal falls below the irrelevance thriesho

In other words, the algorithm searches for a time-frequency
representation, which is sparser but perceptually eqeitab

the original representation after resynthesis.

The algorithm should work for most ’every-day’ sounds,
i.e. real-world music and speech signals, and no calibratio
should be necessary.

The proposed algorithm uses a simple model of simultane-
S masking (also referred to as spectral masking) which is
% sed on data from the psychoacoustic literature (seeogecti

A). The properties of simultaneous masking for simple
stimuli (such as sinusoids or bandpass noises) have been
studied extensively (see reviews by [3] and [4]). A basic
model for the simultaneous masking effect, referred to as th
excitation patternmodel of masking [5], [6], [7], is that the
auditory system can detect a target presented simultalyeous
with a masker only if the excitation pattern of target plus
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the two excitation patterns do not differ in a way detectdiyle
the auditory system the target cannot be perceived, it ikaths
[7]. This basic model allows for the prediction of the masked
threshold of a target signal in the presence of a maskerlsigna
[7], with certain constraints upon the stimuli. The masked
threshold is defined as the minimum level of the target at
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which it is audible in the presence of the masker. In sectionsin summary, the irrelevance filter approach has properties
II.D and I.E we provide an overview of different propertieand requirements that differ from those of established nsode
of auditory masking and of different modeling approaches ththat are used to predict the simultaneous masking effect of
have been shown to be successful in predicting simultaneare signal on another signal. Let us stress the difference
masking effects. between an irrelevance and a masking approach again. A
The concept of the excitation pattern has also been usediasking model gives an indication if adding a second signal
perceptual audio codecs to predict masking effects cauged(target) to a given signal (masker) can be perceived or not. |
individual spectral components of music or speech sounds (eeomparison an irrelevance model gives an estimation wHich o
[8]. [9], [2], [10], [11]). The aim is to calculate the maskedhe components of the signal can be removed. In this parhgrap
threshold in each frequency channel of the analysis-reggig let us use the word 'component’ in the most general way
system to obtain a measure for the maximum tolerable lexad a, possibly complex, part of an additive synthesis model.
of the quantization noise in the respective channel. Thel leWhile it is possible to use a masking approach for a two-
of the quantization noise is controlled by the allocated bitomponent signal to determine if one of the two components
depth. In order to determine if the quantization noise in ia irrelevant or not, for a multi-component signal this weul
given channel is audible or not, the quantization noise nmequire the comparison of all possible combinations of two
that channel is considered as target and the total inputdsowsets of components, as there is no clear distinction between
is considered as masker. According to the excitation pattdarget and masker. Such an iterative approach would be very
model of masking, the target (i.e. the quantization noise) ime-consuming even for a small humber of components. If
considered to be audible as long as adding it to the masker a-priori signal model (with only a few components) can be
(i.e. the total input sound) results in a significant chamgéhé assumed, but instead a signal-independent representi&gon
corresponding excitation pattern. This process is repefate a Gabor or wavelet representation has to be chosen, this lead
each channel to obtain an estimate of the bit depth requiredd a lot of components and a very infeasible scheme.
each channel. In this way, reducing the bit depth for fregyen In order to deal with the specific problems associated with
channels that are perceptually less relevant due to maskiegnoving components from a signal, the following strategy
effects allows to reduce dramatically the digital size iegpi was pursued. First, the masked threshold function was cal-
for encoding without quality loss compared to encoding ataulated, representing the basic simultaneous maskingteffe
fixed bit depth ([2]). as described above. Then, the masked threshold function
Given this knowledge from the literature, an apparentlyas shifted in level by a certain amount corresponding to
straight-forward solution to implement the irrelevanceefil the results of a perceptual experiment and all components
algorithm would be to first identify the components whiclialling below the shifted function (the irrelevance threlst)
are masked by other components, using a masking model likk& removed! At the level shift determined the subjects
the excitation pattern model, and then to re-synthesizg omould not discriminate the irrelevance filtered signal frira
those components that are not subject to masking. Howévepiiginal signal. Using this approach allows to cope with the
became clear after initial considerations and heuristatgsts uncontrolled effects of the above-mentioned propertiss@s
that using this approach is often not successful, since thaged with the removal of spectral components. Furthermore,
resynthesized signal could often be discriminated from tlieallows to cope with inaccuracies of the masking model
original signal. Obviously, an important requirement oé thitself. The masking model chosen for the current algoritem i
irrelevance filter was not satisfied, i.e., the auditory espnta- simple considering the nonlinearities and complex intévas
tion of the filtered signal differs from that of the originésal. involved in auditory masking for real-world sounds. These
One problem leading to this is related to a general propdrtyiaclude nonlinear additivity of masking [12], [13], acress
time-frequency representations. Removing a component wilequency integration in signal detection [14], [15], angs
cause changes at time-frequency locations remote from tha¢ssion [16], [17]. In this way a conservative criterion is
component. This can in turn lead to changes in the mutyatovided for deciding which components can be removed
masking effects between the components and thus in thighout any audible difference to the original sound.
auditory percept compared to the original sound. The primary task of such an irrelevance filter algorithm is
Another problem arises from the application of the concefd remove components of a Gabor transform which cannot
of the excitation pattern model of masking to identify ande perceived by the human auditory system due to mutual
subsequently remove masked components from real-wonthsking effects. Since the masking effect depends on the
signals. For such signals most often more than one comp®negignal itself, which is variable across time, it can be medel
are subject to masking at a time, thus should be removed. This an adaptive non-linear filtering process. The process can
in turn leads to a violation of the assumption of the excitdge split into two steps, first the adaptive calculation of the
tion pattern model thahll components except for the targebperatorG and second its application on the signal.
component are considered as maskers. The probable result is
a lowered total masking effect within the resynthesizedaig L)z Gx) 2)z—G@) 2.
compared to the original signal for which the masking model

has been applied and thus an audible difference between thdlote that both the masked threshold function value at a giSabor
coefficient and the level of the time-frequency componenth which it

tWO. In other quds, remqvmg more th_an one component aﬁsacompared to, represent levels that are integrated ov@eetrs-temporal
time can result in unpredictable masking effects. region.
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The first step is non-linear, whereas the second step is IB- Time-Frequency Analysis
ear. The following section describes the time-variantrfifig The Fourier Transformation denoted byf — f, is a well
process known as a Gabor multiplier [18] as well as GabRpown mathematical tool to analyze the frequency content
filter [19]. Then, the psychoacoustical background, thetexg o 5 signal f. Thanks to the very efficientast Fourier
masking models, and the implementation of the algorithm aggnsformation (FFT)[27], many discrete applications and
described. The last section describes the perceptuali®m®r jeyelopments have been made feasible. Listening to a sound,
to control the free parameter, the level shift of the irrakese 5 \gice or music, a listener does not hear spectral compsnent
thresh_ol_d, using the _criterion_of the discriminability Ween 5,4 their amplitudes only, but also their dynamic evolution
the original and the filtered signal. A well known algorithm for a time-frequency representation
The irrelevance filter presented here has first been devgl-ine Short Time Fourier TransformatiorSTFT [28]. One
oped and tested in [20] and implemented S'* [21], @ ay to ook at the STFT is to multiply the signdl(¢) with

signal processing software system designed at the AC8USHCyjindow functiong(t — 7) to obtain a version of the signal

Research Institute of the Austrian Academy of Sciences:-Pragnat is concentrated at the time (if the window is chosen
tical experience indicates that the irrelevance filter iseayv accordingly). Then the Fourier transform is applied to the
effective algorithm for real-world music and speech soundg.gt:
The resulting signal representation is more sparse andrdasi oo

interpret. Main applications are the facilitation of thengyesis ———— 9riwt
of sounds and the ease of the interpretation of time-freqquen STFTy(f)(r,w) = / F)g(t —7)e dt.
properties of signals used in perception-related tasks. -
This can also be seen as a projection of the sigial) on
Il. BACKGROUND: NOTATION AND PRELIMINARIES the time-frequency shifted Gabor atoM T, ¢(¢), whereT

A. Frames denotes théranslationoperator (i.e(7; f) (t) = f(t—7)) and

i H _ 2mwt .
To introduce the issue of perfect resynthesis a short sur]\n4— the modulationoperator (i.e(M. f) (t) = ¢ F()):
mary of frame theory [22], [23] is given. Frame theory has STFT,(f)(r,w) = (f, M,Trg(t)) .

been recognized as being important for signal processing in . , , i
recent years [24], [25]. If the STFT is not considered for continuous variahleand

Let 7 be a Hilbert spacé{ with inner product(.,.). The but in a sampled version, it is called@abor transform
sequencey,) of elements ink for k = 1,2,... is ’called a A Gabor systenwith time shift parametef?, also callechop

frame if constantsd, B > 0 exist, such that size and frequency shift parameteg is given by:

AP Ao <B-IfI?VfeH. (D) (g, H,wo) = {MuoiTrrg : k,1 € Z} =
k

= {e?riwoleg(y k. H): k1 €Z).
The constantsd and B are calledlower frame boundand

upper frame boundespectively. If these bounds can be chosel!® Gabor transform is the projection on the Gabor system.
such thatd = B, then the frame is calletight. If A ~ B, the The equivalence between Gabor analysis and corresponding

frame is calledsnug The operatorS : H — H, defined by  flter-banks is a well-known fact [25]. ,
From time-frequency representations like wavelet anglysi

S(f) =Z<f7¢k>-z/)k VfeH [29] and the Wigner Ville representation [30] the STFT
k respectively the Gabor transform has been chosen as it is a
is called theframe operator For every frame, the frame”near transformation and fast algorithms directly cornadc
operator is self-adjoint, positive and invertible. to the frequency domain are available.
Frames are useful for signal processing applications, be-1) Synthesisin order to perform modifications of a signal,
cause they allow perfect reconstruction. Wi hﬁk) .— a analysis system as well as a synthesis system is needed.
The continuous STFT has an inverse, but it cannot be handled

(S~1¢y,), the so-callectanonical dual frameevery signalf

efficiently as it involves weak integrals. A series expansio
can be expanded to y 9 pans

like in the case of Fourier series, would be much more
f= fo )b and f = £ ) D desirable, both as a model and in an algorithmic sense. So
,§(< k> g ,§(< k) Uk a Gabor transform is used. If th@abor systent(g, H, w)

. . : . forms a frame, then every function is represented as infinite
For a tight frame this reconstruction has a very simple forrgth discrete linear combination:

f =% 3 (f,¥) . For snug frames this simple recon-

structiorllceéi(ven above gives a very good approximatiorf of f6) = Z STFTy(f)(k - H,1- wo) - (2™ g(t — k- H))

This means that for a system, e.g. a filterbank, that con- /€%
stitutes a frame, we can find the perfect synthesis systemfbythe canonical dual window. Contrary to the Fourier trans-
calculating the inverse frame operator and applying it an tliorm the Gabor transform with a good time-frequency concen-
original system. There are some algorithms for calculatiig) tration cannot fulfill a orthonormal basis property, whieladls
inversion in an efficient way [22], [26]. For tight and snugo a conceptional difference between these two concepts. In
frames no complex calculation is needed. particular synthesis coefficients are not unique anymard, a
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perfect reconstruction can not always be achieved by usieg As we regard all vectors as periodic, this is the cyclic con-
same elements for analysis and synthesis. The Gabor fravokution. The discrete Fourier transform convolution ofotw
theory provides a method to calculate a perfect reconsbructvectors corresponds to the element-wise multiplicatiotheir
window and there are several algorithms available to do thdiscrete Fourier transform*y = & - §, where we denote the
in an efficient way [31], [32]. Discrete Fourier Transformation (DFTagain byz — z.

2) Gabor Filters: Time-invariant filteringhas been used We will consider the Gabor systenG(g,a,b) =

for many years [33]. This technique transforms the signalyy, 7,,9:k=0,...,a;n = O""’ZZ} for the window g.

into the frequency domain and multiplies the spectrum witfy,o parameters, andb, are restricted to be factors efsuch
a fixed function. A generalization of this procedureti®e- inat the numbersi — = andb = ™ are integers. That is

variant filtering, which has attracted more and more atte”tioé‘quivalent to sampling with perio ’ b

b
) b ° @ and settingwy = 7
in the past years. Gabor multipliers, call€labor filters !

. ¢ signal . 191 dime-f ” and H = aT'. Note thatb denotes the number of frequency

in terms of signal-processing [19] dme-frequency masks .« \ritten as) — Ny pr. In the discrete, finite-dimensional

in computational auditory scene analysis [34], are paditu . se the Gabor frame operator has a special structure, the
cases of tlmt_a—varlant f_||ters. The signal to _be processeq nfatrix S is zero except in everk-th side-diagonals and these
transformed into the time-frequency domain, the res”“”}ﬁde-diagonals are periodic with periad This property can

coefficients are multiplied by a function on the same domayp, directly seen by using th&alnut representatiof86] of the
and the result of this multiplication is resynthesized. BTG abor frame matrixs = (S,.,). :
- P,3/n.n

formally, we can define [35], [18]:

AN Theorem 2:
Definition 1: Let G(g, H,wo) be a Gabor frame. For a -
bounded sequencen; ;) of complex numbers, called the P _ 7
symbo) the Gabor multiplier or Gabor filter G is defined as 5, , = bkgo Ip—ak *9g-ak  fOrp—g=0modb
the operator 0 otherwise
Gf(t) = STET,(f)(k-H,l-wo)-(X™0tg(t — k- H)) .
1@ k;Zm<k,z> o) wo) (e a )) In this setting the Gabor transform at the sampénd the
Other possibilities to define and implement time Variaggequency bink can be written as:
filters, among them the Zadeh and Weyl Filter [19], have been n —arikm
considered. Finally the advantages of a Gabor filter are the Gab(@)i,rx = STFTy(x)ia,k0 = Z TmGm—la€ “FFT .
following [19] : m=1
(|) Easy implementation; the Gabor coefficients are mu|t|n this papel’ we also want to stress the formal distinction
plied and then resynthezised. between Gabor transform and the full STFT even for the

(i) Computational efficiency compared to full STFT filtersdiscrete cas&C”. The STFT can be seen as a limit case of

(i) Easy interpretation in the time-frequency plane; théhe Gabor transform for = b = 1 (samples)? The discrete
Comp|ex values at the time_frequency Samp”ng p0|n§TFT is alW&yS invertible with any window which is not
are simply multiplied. perpendicular to the original one, in particular for stadda

(iv) Small time-frequency spread; only small time-freqegn windows (with positive values) this is always possible. For
shifts are introduced with accordingly chosen windowd Gabor transform a frame condition has to be checked
(i.e. it is an underspread operator). This property cdf guarantee perfect reconstruction. Furthermore notyever

be improved, if the redundancy (see Section 1I-B4) i¢indow allow reconstruction.
increased. For the full STFT, although no weak integrals have to be

considered as in the continuous case, it is still numesicall

. : o Y ) :
rent application finite dimensional, discrete signals dfféasible as it involves:® data points, Using the Gabor
length n are considered only, such as vectors denoted B§nsform the data points are reduceda In case of small

¢ = (20,21,...,2n_1) € C". These vectors are re-% andb still ‘too many’ data points have to be dealt with, in

garded as periodic functions o (with period n), so the sense described in the next point: .
Ticknm = x; for all i,k € Z. In this case, the 4) Redundancy:ln practice of gnal_y3|s—synt.he3|s ;ystems,
modulation and time shift operators are discretized, i.§€ducing the amount of computation is essential, which mean
Tit = (Tpets Tnipls - s @0, L1, s Tn_i_1) and Mz = reducmgtheedundanchfthe re_pre_sentatlon.The re?vundancy
Zo WO s WAE e DR with W = o2 for a discrete Gab_or_transform is gl\{enb@d = 5 = ~EEL

0" ot " P e sl T T . "o compared to the limit case of the discrete STFT wherg=
As all vectors are periodic, the translation is a cyclic aper  , _ n. This motivates why this value is called redundancy,

In applications, as the one presented here, such vectors fé}ea signal of length, is represented by the STFT with?
normally samples of a continuous function. The indices cof:

Co . ata points.
respond to the number of samples, so in this setting no uni P
have to be used.

The convolution of two vectors i€™ is defined by

3) Discrete, Finite-Dimensional DataRegarding the cur-

tSOnly if the Gabor system forms a frame the frame expansion
can be applied to obtain perfect reconstruction. Gabor [37]
proposed that in the case of Gaussian windows the redundancy
n—1

(z * y)k = Z Ti* Yk—i- 2This distinction is not always made. Sometimes the Gabarsteam is
=0 also called a STFT, even if £ 1 andb # 1.
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could be reduced tored = 1. It can be shown that the where fi . is the frequency in kHz. In a first approximation,
Gaussian windows constitute faame for red > 1 [28]. the Bark scale resembles the tonotopy (refer to Figure 1).
The question if certain windowing functions form frames for

certain redundancies has already been answered for m The Bark scale

systems. Itis clear that there is a kind'blyquist criterion"for
Gabor frames, as it has been shown that no window functi
can be a frame fored < 1 [28].

Another approach to the concept of redundancy could
taken to include a perceptual viewpoint. If one is interéste
in perceptual feature extraction, any part of an audio s$igr
that cannot be heard can be considered as redundant. If
signal is reduced to the perceptually relevant parts ohlg, t
representation can be made more sparse, compared to
perfect reconstruction scheme.

Frequency (Bark)

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700 2900 3100 3300 3500 3700 3900

C. Physiological Background of Masking and Irrelevance sfa i

An comprehensive review of the physiology of the auditory
system and psychoacoustics can be found in [38] respectively. 1. The Bark scale: plot corresponding to Equation 2
[3]. Sound waves arriving at the ear spread through the ear
canal, pass the middle ear, and finally reachdbehlea The  Applying the Bark scale, the slopes of the excitation patter
mechanical vibrations are transformed into electricaloact of a sinusoid are constant as a function of the absolute
potentials to be transmitted to the brain via the auditony@e frequency. This scale is based on the conceptitital bands
The transformation is performed by the hair cells located gn audition, which is related to the auditory filters. A basic
the basilar membrane (BM), whose vibration pattern resesbHefinition of the critical band states that spectral compisie
a traveling wave, moving from the oval window to the apex dfteract fundamentally differently within a critical baridan
the cochlea. Maxima of vibration occur near the oval windowacross critical bands.
for high-frequency tones and near the apex for low-frequenc
tones. This correspondence of frequency to place on thiabasjy Masking
membrane is calletbnotopy Physiological measurements of , .
basilar membrane motion and auditory nerve activity have V@sking refers to the process by means of which the
shown that the frequency of a pure tone is encoded tefreshold of audibility for one sound (the target) is ralse_d
porally as well as tonotopically. Therefore, different spal PY the presence of another sound (the masker). Masking

components of a broad-band signal end up in different neuf@" render the masked sound inaudible. Masking occurs in
channels of the auditory nerve. two main signal configurations; simultaneous occurrence of

The frequency selectivity of the auditory system, i.e. thi@'96t and masker is referred to imultaneousfrequencyor

ability to separate closely spaced frequency componeslts,SPeCtral masking3]; non-simultaneous occurrence of target

limited. This can be understood by considering the actvati @"d masker is referred to ésmporal maskinge.g. [42].
pattern of the basilar membrane caused by a sinusoid. Thifeal-world sounds are broadband and therefore involve
so-called excitation pattern has the maximum at a specifii/tual masking effects between the individual narrow-band
place along the BM and decays towards both sides (see FigipgPonents into which the signal can be decomposed. This
3). This implies that the sinusoid activates also neighgpri'iS€S the question how the masking effects of more than
areas at the BM. The slopes of the excitation pattern depeif Simultaneous masker on a target add up. To a first ap-
nonlinearly both on the absolute frequency and the amitugroximation, the masked thresholds elicited by two indaad

of the signal. With increasing frequency region the spacigpa_Skers have to be added linearly in the power domain to
between the characteristic places in mm corresponding t§@/Ve the combined masked threshold [12]. For two equally
given frequency distance in Hz decreases [39]. The S|0pesee;t|ectlve maskers this means that the _masked thresholckin th
the excitation pattern in BM deflection per tonotopic dis&n presence of both maskers is 3 dB higher than that for one

(both in mm), however, are constant as a function of Signg]asker alone. This rule may apply if side effects are ruled
frequency. out, such as the detection of cochlear combination products

Psychoacoustic frequency scales have been derived exjee-detection of the target at a tonotopic place aside fram th
imentally, reflecting the nonlinear mapping function of théarget frequency (so-called off-frequency listening: Jj4®r
signal frequency. The so-called Bark scale functiean be listening for the signal in minima of the temporal envelofie o
expressed analytically [41] as the masker [12], [13], [44]. In many configurations, however
ficrz 2 9 the additivity of masking can be larger than according to
7.5 ) @ the linear addition rule; in [44] it has been shown that for

3Another well-described scale is the so-called Equivalemct@ngular spectrally non-overlalpplng maskers nonlinear addltl.\E.it}./P'le
Bandwidth, ERB scale (e.g. [5]). The two scales are conedlptisimilar. rule. Furthermore, little is known about the additivity of
see e.g. [40] masking for more than two maskers [45].

b(fimz) := 13 tan™'(0.76 - fim,) + 3.5 tan™"(
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Another effect complicating the prediction of masking efto use a priori knowledge about the target in the detection
fects for real-world sounds is that the auditory system-intetage, which appears to reflect the underlying process iala re
grates signal information across frequencies to deteareaki observer. The model is able to accurately predict the refult
As an example, for two simultaneously presented sinusoiddarge variety of simultaneous and non-simultaneous mgski
equally contributing to detection, the masked threshold pexperiments.
sinusoid is about 2.5 dB lower than the masked thresholdsn summary, there exist several models that can predict the
for each sinusoid alone [14]. This implies that two (or moregguditory masking effect. But as mentioned in the introdurcti
spectral components of a broad-band signal may be audibléhe specific goal of the irrelevance algorithm requires a
even if each of them separately is below the masked threshatbdified approach, which is described in the next section.

In addition, the maximum bandwidth up to which spectral
integration is efficient depends on the signal duration.[14] I1l. THE IRRELEVANCE FILTER ALGORITHM

Furthermore, mutual suppression effects between indaidu 5 4im of the proposed algorithm, whose outline is shown

spectral components of a sound may reduce the effeCtiierjgyre 2, is to remove any components of a music or speech

masking effect evoked by those components [46]. signal which do not contribute to the perception of the sound
after resynthesis, i.e. which aperceptually irrelevant This

E. Masking Models implies that the masking effect of each component on every

| h Hies. two t f models h b d other component has to be considered. In the introduction
N psychoacoustics, two lypes of models have been dever i, \ye presented arguments why a model which just

?ped that att_?nt]_pt to pt:edlct sumu(l;canem:)s szkm%' IrheTEFgmoves those components that are subject to masking will
ype are excilation patterm or loudness-based modeis.€1NgEx, 04 1o satisfactory results, even if a sophisticatesking

(rjnc;delz, ,:E thet" t.m't'al for.mulrlglt]otn, transfqtrn; a sptegtyal model, like the ones presented above, is used. Thus, the
efined (thus stationary) signal into an excitation pat{&jn cyrrent problem required the definition of a new threshold

This approach goes back to the power-specirum modelf ction, fulfilling the following conservative criteriorthose

masking .[4.7]’ in-which the auditory periphery is _congeive omponents whose amplitudes do not exceed the threshold
as con.talnlng a bank of bandpass fll'Fers. Masking is th Uhction can be removed while resulting in no perceptual
d_etermmed by the_target-to-m.askgr rat!o at the output ef t ifference to the original sound. Note that the conventiona
filters. The target is masked if this ratio does not exceed sked threshold function determines which components are

Eertegn value. Basidt on thd|_s tbasmkz:_lpprfoach,b!? [6] at m_eth% sked whereas the new threshold function determines which
as been proposed to predict masking for arbitrary staon omponents can be removed while causing no audible effects.

maskers. In [7] this method was used to predict dlfferent.l.his new threshold function, referred to aselevance

psychoacoustic measures of simultaneous masking. The Otwyeshold contains a level offset parameter whose optimal

moderate success of this model was attr_lbuted mam_ly é tting has been determined in an perceptual experimet wit
the fact that it does not represent the nonlinear behavior subjects. The level offset allows to cope with unconébll

auditory processing. Variants of this excitation-pattge of effects associated with removing components from a sound.

models, intended to predict loudness perception, hav_e befﬁnaddition, it allows to manage inaccuracies in the masking

p;oposedd(g.g;t.r][48], [49)). Thfey altlﬁw to predditc):t me aukbpi model applied, which is simple and unlikely to predict accu-
?h a:so%nbll!tn € presetncef_o gno tgrlslouz y Set.ﬁsérgnppgfély the complex and nonlinear effects involved in magkin
al audibliity occurs at a fixed partial loudness. St ilparticularly in multi-component stimuli. The realizatiofithe

vgrla_nt .Of t.h's model type was designed to predl_ct au_d_;bll concept of the irrelevance threshold is described below.
discrimination thresholds for spectral envelope distoidi in

vowel-like sounds ([50]). _ _

The second type of models ([51], [52], [53], [54], [55]) The Spreading Function
attempts to simulate the effective signal processing in theThe term spreading function is used here to functionally
auditory system. These models are intended to predict agscribe the spread of excitation induced by a sinusoid en th
more peripherally-located auditory effects. The main ®ofi BM in the Bark scale [56]. An approximation of the spreading
the family of models presented in ([51], [52], [53], [54]), is function is a triangle-like function (in the Bark scale with
however, on the modeling of masking effects. The last varsitogarithmic amplitudes), see Figure 3. It was used in [20]
([54]) consists of outer- and middle-ear transformatiore- to formulate a simple model of simultaneous masking and
linear cochlear processing, hair-cell transduction, aagqg approximated by the function
expansion, an adaptation stage, a low-pass modulation élte
bandpass modulation filterbank, a constant-variancenater -~ e (L2
noise, and an optimal detector stage. The optimal detectoBr(w) N 13'94+1'5'(w+0'03)725'5'\/0'3+(w+0'03) @)
stage represents a decision process, where a stored témpa@s a combination of two other models found in [56] and
representation of the signal to be detected is compared wWi#Y]. More general, the shape of the spreading function can
the actual activity pattern. Note that the main differercée  be modeled by three parameters: the lower frequency slope
excitation pattern-based models, besides the apparemsdiv [ and the upper slope (giving the absolute slope of the
of the processing stages included, is the implementation left respectively right part of the function idB/Bark), as
the decision process. The optimal detector allows the modetll as a non-negative parametethat allows to control the
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B. The Irrelevance Function

This spreading function is used for the calculation of

a threshold function, the irrelevance functiafy,, in the
Fig. 2. The main stages of the irrelevance algorithm. The ipkerted into following way.
the graph shows a signal spectrum and the calculated iaraevthreshold.
Time-Frequency components whose integrated level withBahor-bin falls 1) Calculate the square of the absolute values of a Gabor

below the irrelevance threshold are filtered out. transform of the signat, |Gab(:c)l,k|2.
2) Transform the columns, power spectra of the signal at
regular temporal intervals, into the Bark scale.
) Convolve with the involuted spreading threshold kernel
By(w) in the Bark domain. Transform back into ttiz
scale. Denote this, see also Appendix A, by

<|Gab(x)17,|2 ¢ BO(.)>

smoothness of the function at point zero. This parameter is
introduced, as the model should predict the smooth exaitati
pattern of the BM for a single sinusoid. The function

l— l
F(x):Tuncf%w/eJr:cQ 4)

is used as shape function. As k

, l—u  (I+u) -z 4) Weight the result by the relative bandwidg#[‘% at
Fi() = 2 2.eta2 ) the corresponding frequency bin, whetdé3(w) is the
. , _ . , _ critical bandwidth, see Eq. 9.
we getxlgr;OF (_x) - a_nd xEIE;OF (x) =1las gxpected. 5) Shift the result (in dB) by an level offset parameten
In [20] the maximum Of thIS funCtIOI"(,:Cmaz, ymax) IS found get the "'relevance funcuoﬁ
approximately, but can be calculated analytically as )
o - ey (Gaban ¥ B
Tmazr = il ua Ymaz = — e-u-l. 7 _ CB(N;.II;T) ( 7 k
lu 2 Lk = 100710
A new function B(z), the spreading function, is built, such 6) UseZ as a threshold function to get the symbol for a
that the maximum is shifted to the poift, 0). Gabor filter.
B(w) =F (W + l‘ma:c) — Ymaz- (6) e { 1 if Gab(x)lvk > Il,k
Settingl = 27, u = 24, e = 0.3 in Equation 6 (according to 7 0 otherwise

[56] respectively [57]) leads to Equation 3. These pararsete Apply the Gabor filter on the signal.
have been used in the perceptual experiments described in More details on each step are provided in the following.
Section 11I-D. Note that we included no level-dependency of 1) Gabor Transform:The current algorithm uses tdam-
the spreading function since we wanted to avoid the caldorat ming window of [engthNuin, 1.€.
of the input signal. In the implementation $17"¥[21] vary- { 0.54 — 0.46 cos (Qﬂ—N k _1> 0<k < Nuin —1
ing these parameters allows an heuristic estimation of thei e
influence on the algorithm.

Furthermore, a new functio,(w), called thespreading
threshold kernelis introduced. For a givea> 0 we set

_f -0 we(0—€/2,0+¢€/2)
Bo(w) = { B(w) otherwise ’ (7)

9k =

8
otherwise (®)

A Gabor analysis is performed with the time shift= %

and Nppr > Ny frequency bins. This corresponds to the
“painless non-orthogonal expansion[28] and ensures that
the Gabor transform can be computed efficiently. For the

4Involution means mirroring around, i.e. fIipping:f(x) = f(—x).



8 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSEN

continuous case it can be shown that the Hamming winddq®wFT).
always forms a tight Gabor frame for any hop ste= % 4) Weighting by Relative Critical Bandwidthit can be
for any = 1,2,.... This is not true for the sampledshown, see Appendix A, that the spreading function caledlat
version of this window as in Eg. 8 , because the typicallgy convolution and using appropriate weightings is eqeival
chosen boundary conditions, i.e. that the window has theesatn the excitation pattern calculated according to the netho
value at0 and N,,;, — 1, does not support this in the finitedescribed in [6].
dimensional case. But this half-point symmetrical wind@wv i The excitation pattern of a signal with constant amplitude
typically used in applications. Nevertheless it would alla and constant spectral density (e.g. a harmonic complex with
more intuitive interpretation of the time-frequency cagéints, equal amplitudes) grows with increasing frequency [5] due t
if the same window is used for analysis and synthesis. Aldhe broadening of the auditory filter. This effect is modeled
to avoid the calculation of a dual window, we show thaty the assumption of the shift-invariance of the spreading
the discrete Gabor system forms a snug frame in the finitareshold kernelB(w) in the Bark domain, as this implies
discrete case. With a redundancy ®fusing Theorem 2 it a broadening of this kernel in the Hz domain. Furthermore,
can be shown that the Gabor matikis a diagonal matrix there is an effect caused by the change in the spectral gensit
with a (nearly) constant diagonal (for the parameters usedds a function of frequency. By the one-to-one approach ®r th
the experiment, see Section 1lI-D1 up to a relative error &fz to Bark transformation, the spectral density is incregsi
e = 4.0090 - 10~5). This is an acceptable value, so the perfetith frequency in the Bark domain. As the resulting function
reconstruction can be obtained up to a very small error if th&®used as a threshold function the rising tilt has to be aahid
same Hamming window is also applied as synthesis windolecause it would result in overly masking of higher freqyenc
with an appropriate scalingl (810.7694 for the parameters components. Therefore, the threshold function is weighted
used in Section 1I-D1). So this window forms a snug framday the relative critical bandwidth00/C B. This corresponds

2) Hz-to-Bark Transform:The transformation of the signalto using the same weighting function only in the backward
spectrum from the linear into the Bark frequency domaimlirection, see Appendix A. The resulting function is reéekr
Hz — Bark, is performed according to a point-wise relationto asmasked threshold functiofThe formula for the critical
For that purpose a fixed grid in the Bark scale is definedandwidth [41] is given by:
with Np... bins. For every FFT-bin the nearest Bark bin e
corresponding to its Hz value is chosen and set to this value. CB(w) =25+75- (1+14-107° %) ©)
Components not corresponding to FFT-bins are set to zeThe masked threshold function is transformed to the Hz scale
This means that the number and values of the non-zero bétgain on a one-to-one basis.
in the Bark scale correspond to the number and values of theés) Shifting by Offset:Finally, the masked threshold func-
associated FFT-bins. The number of bins in the Bark domaion is shifted in dB level according to an offset parameter
is chosen high enough, such that the resolution is alwaysrbeb. The appropriate choice of the offset parameter ensur¢s tha
than on theH z scale, i.e. this transformation is one-to-one.any uncontrolled effects of signal processing and propeuf

This point-wise relation can be seen as corresponding tarasking not accounted for by the described masking model
sinusoidal synthesis model and was chosen to be comparabke coped with. The determination of the offset value is thase
to [57], which motivated the choice of the values forand on a conservative criterion derived from the perceptuabtes
[. This choice for the transformation can also be found, falescribed below, including a variety of real-world tesirstii.
example, in the explanation of masking effects in [4]. Finally, the shifted threshold function is called tineslevance

3) Spreading by ConvolutionThe convolution can be threshold
implemented very efficiently using the FFT in an overlap- 6) Gabor Filter by ThresholdingThe simultaneous mask-
add (OLA) approach [33], applying zero-padding to avoidthg algorithm is implemented as an adaptive filter. The drrel
the aliasing effect due to circular convolution. A convaat evance threshold function is calculated for each conseeuti
model of auditory masking assumes linear additivity of maskpectrum of a running signal. Only the components exceeding
ing in the power domain, i.e. linear summation of energyhe threshold are included in the re-synthesis stage. Téjs s
Although power-law additivity may be more appropriate itis equivalent to multiplying each time-frequency pointbgr
certain signal and masker configurations [13], [12], [44],. Fig. 4 shows the perceptually relevant TF components.
linear additivity gives a conservative estimate of the nragk  This procedure is an example of a Gabor filter with a symbol
effect. Using convolution implies that all components, reveconsisting of zeros and ones. First ilrelevance thresholds
those which may fall below the absolute or masked threshaldtermined based on the signal, which is clearly an adaptive
function, are taken into account. This step is based on thed therefore non-linear process. The filtering stagefitsel
assumption that even sub-threshold components may cantime-variant filter, is a linear process again. Introdgcin
tribute to the combined masking effect. As seen in Equatidhis model, the underspread property (see Section 1I-B2) is
7 the spreading threshold kernB)(w) is zero (on the linear important, since the induced time-frequency shift showddb
scale) or negative infinity (on the logarithmic scale) witllie ‘local’ as possible. The approximation process, in whickyon
interval (0 —e/2,0+ ¢/2). This reflects the assumption that aingle time-frequency points are removed from the signak w
given frequency component cannot influence the irrelevangerformed as accurately as possible. The goal was to obtain
threshold at the same frequency position. In the algoritham operator with good time-frequency localization, i.e. an
e > 0 is set to the resolution of the discrete frequency analysisaderspread operator [58]. To achieve that goal and fofigwi

0.69
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Gabor theory, a high redundancy has been choseh—= 8. overestimation of masking effects, either due to inacdesac
At high redundancy, short on/off cycles of single compogsenin the masking model, e.g. due to spectral integration inalig
that are close to the irrelevance threshold are smoothed alétection, or due to unpredictable effects associated tlith
which is desirable from a psychoacoustical point of view agmoval of components.

sharp on/off edges cause audible artifacts.

Spectogram of bach

Symbol for Irrelevance method
e —— e T

Fig. 4. TOP: The spectrogram of test signal 'bach’ (classicasic by J.
S. Bach), high amplitude is displayed brightly, low darkijDDLE: The

symbol of the Gabor filter for the irrelevance filter, white 1, black = 0.

BOTTOM: The result of the point-wise multiplication of treswo sets of
coefficients, representing the amplitude of relevant camepts.

C. Numerical Complexity

1) Method: Thirty-six normal hearing subjects completed
the experiment. The majority of them were students of the
University of Vienna. The test stimuli were derived from 25
music recordings, covering a wide variety of musical styles
and musical instruments, and one speech recording obtained
from a female news speaker. From each of the 26 sounds,
segments with three different durations (300, 600, and 1200
ms) were extracted. Linear ramps with a duration of 90 ms
were applied. The segment borders were determined pseudo-
randomly within a preselected range. Segments for which the
random process led to truncation of musical phrases were
discarded® The sound level of the stimuli was set to yield
a comfortable loudness. The stimuli were stored on computer
hard disc and output via a DAC converter (Siemens, ADC
16/12-15), an amplifier (Kenwood KA-7100), and a circum-
aural headphone (AKG K 240 DF). Only the right channel
of the recordings was presented to the subjects. The sabject
were seated in a double-walled sound booth (IAC 1202A). The
sampling frequency of6 kHz and a digital word length of 16
bit was used.

Based on the results of pilot tests, four processing condi-
tions were selected for the main tests (Table 1): Condifion
represented the original (unprocessed) signal. ConditlpB,

Using a simple linear model, a convolution and a simplend4 corresponded to the values of the parametéhe level
thresholding approach leads to a fast algorithm: For a sigroffset) —6.59, —4.59 and —2.59 dB, respectively. Condition
of lengthn with hop sizea we get? spectra in the Gabor 1 corresponded to = —oo.
transform. For each of these spectra we have the following

calculations: Condition | Offseto
1 —oo dB
1) Gabor transformO(Ngpr - log(Nppr)). 2 ,6?9 dB
2) Hz-to-Bark transformO(Npggrk)- 3 —4.59 dB
3) Spreading by convolutior® (N, - 10g(Npark))- 4 —2.59dB
4) Weighting by Relative Critical Bandwidti®(Np,.x) TABLE |
5) Bark-to-Hz transformO(Npark ). THE FOUR CONDITIONS TESTED IN THE PERCEPTUAL EXPERIMENTHE
6) Shifting by Offset:O(Ngpr). dB VALUES SPECIFY THE LEVEL OFFSET PARAMETER.
7) ThresholdingO(Ngpr).
8) inverse Gabor transforn®?(Nppr - log(NrrT)).

The offset parameter values were chosen to encompass the
transition from chance rating to significant discriminati@ll
other parameters of the algorithm were held constant:

As Npu.r > Nppr for the whole signal we have an
estimation of the number of operations by

n
O(= - Npark - log(NBark))- sampling rate 16 kHz
a window length Ny, 256 samples
FFT lengthNrpr 256 samples
D. Experimental Evaluation of the Proposed Algorithm hop sizea 32 samples

lower slope of the spreading functidn 27 dB / Bark
upper slope of the spreading functian 24 dB / Bark
damping factore 0.3

length of Bark scal&Vg,rk 512 samples

ach of the 26 sounds was presented once at all com-

The algorithm was evaluated in a listening experiment [20].
The aim was to find the value of the free parameter
determining the level offset of the threshold function, for
which normal hearing listeners cannot detect any diffezenc
between 'ghe processe_d signal and the ariginal for a br ‘fations of three durations and four processing condition
range of signals. The higher the level of the threshold fonct resulting in a total number of 312 test stimuli.
the more spectral components fall below the threshold andZ double-paired comparison task was used to obtain percent

are filtered out. Foro = 0, the threshold function is not o - .
) -, . scores on the discriminability between original and preeds
shifted. Positive and negative valuesoaforrespond to upward y 9 P

and downward shifts in_leveL respectively. A downward 'Sh_if 5This was intended to introduce a kind of controlled randossrieto the
of the threshold function allows to account for potentialelection process.
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stimuli. This task represents a four-interval, two-alttive However, obtaining one significant result in 36 test rejoeti
forced-choice procedure. One pair contained two identicaith an alpha level of 5 percent is likely to occur by chance. |
stimuli (the original signal) and the other pair containedase of condition 336.1 percent of the subjects reached the 5
the processed signal and the original. The temporal positipercent andl9.4 percent reached the 1 percent significance
of the processed condition within the four possible sign#dvel. In case of condition 475 and 61.1 percent of the
intervals was randomized. The subjects had to indicatetwhisubjects obtained significant scores at the two significance
pair contained different stimuli. The subjects were alldwe levels, respectively.
repeat the stimulus five times at maximum before giving a To obtain a statistical measure of sensitivity for the sam-
response. The stimulus intervals were indicated visuailyao ple of subjects as a whole, the mean percent correct score
computer screen. Visual feedback on the correctness of #toss all subjects was analyzed for each test condition. Fo
response was provided after each trial by indicating if th& = 36 - 3 - 26 = 2808 trials, theu-testreveals that scores
correct pair was chosen. The inter-stimulus interval ofheaexceeding 52.5 and 51.9 percent correct indicate discamin
pair was 0.5 s and between the two pairs 1 s. The ordfsn performance above chance level (alpha levels of 0.@1 an
of stimulus conditions was randomized and the same ordgD5, respectively). As can be seen in Table Il the perfoaaan
was used for all subjects. The stimuli were split into twexceeds these critical values for condition 3 and 4, but not
blocks, each lasting about 40 minutes. Before the start foff conditions 1 and 2. The aim of the experiment was to
data collection, a practice period of maximally 25 items wand the highest value of for which the listeners could not
completed. discriminate the processed from the original signal. Hence
2) Results: The mean percent correct scores for the fowondition 2 is considered as the irrelevance thresholcasele
processing conditions at each of the three durations arershhote that the term irrelevance threshold refers to a signal
in Fig. 5. The error bars show 95% confidence intervajsrocessing function and not to a psychophysical threshold.
around the mean scores across the 36 subjects. A tWOpqr condition 2, 35.8 percent of the Gabor coefficients,
way repeated-measures analysis of variance (RM ANOVR} average across all stimuli and windows, fell below the
(factors: processing condition, duration) was performBte jrrelevance threshold and hence were set to zero. The sthnda
percent correct scores were transformed using the ratz@al geyiation of the percentages across the stimuli was 8.5perc
arcsine transform proposed in [59] to not violate the homgg absolute hearing threshold criterion was applied for the
geneity of variance assumption required for an ANOVA. Thgg|cylation of these percentages. This means that it isitpess
RM ANOVA showed that the main effects were significanfhat a portion of the discarded coefficients fell below the
(processing condition: p < 0.0001; duration: p = 0.002) ahsolute threshold of hearing. Only a small percentage of
well as their interaction (p = 0.036). Tukey HSD post-hotsiesihe signal energy has been removed (depending on the signal
revealed differences to be significant between all comlinat petween 0.2 and 1.2 %, statistically 0.470.26 %). Please
of processing conditions except between conditions 1 andygyte that not only the components with the lowest amplitudes
The main effect of the factor duration (and its interactiofere removed.
with the factor processing condition) was found to be caused
by significant differences between durations 0.3 vs. 0.6rs fo
processing condition 3 and by significant differences betwe
durations 0.3 vs. 1.2 s and 0.6 vs. 1.2 s for processing 100.00
condition 4. Thus, there were significant improvements with
increasing duration, but only for conditions 3 and 4.
The obtained percent correct scores are binomially dis2 800

Condition 1 (Original)
90.00 Condition 2 (-6.59 dB)
Condition 3 (-4.59 dB)

Condition 4 (-2.59 dB)

ct)

. . .. . . < I
tributed. To obtain a statistical measure, if a particulore S 70.00 §§§
represents sensitivity of the listener to discriminatedfiginal ¥ . ;;;; 3 §§§§
from the processed sound (H1) or falls into the range of odand 52 2 3

50.00 i o5 ke

performance (HO), a test based on the binomial distributioé
is required. For each subject and processing conditioretheg 40.00
were N = 3 -26 = 78 trials. SinceN > 60, in which
case the binomial distribution can be approximated by th%
normal distribution, theu-testcan be used to determine the &
probability that a given score is obtained by chance. In the 10.00
specific case, we calculated the minimum score which has
to be obtained to exceed chance performance at the given N 300
of 78. Scores exceeding 64.1 and 60 percent correct indicate
discrimination performa_nce above Chance_ at alpha levels IQJ 5. Percent correct discrimination scores obtainedhftbe perceptual
0.01 and 0.05, respectively. Table Il depicts the percentagkperiment for the four signal processing conditions ametisignal durations.
of subjects for which this was fulfilled for each of the fourrhe error bars show 95% confidence intervals around the malaes/across
processing conditions. In case of condition 1, no subjelf 36 isteners.
exceeded the range of chance performance and for condition

2 one subject just reached the 5 percent significance level.
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Processing Condition
1 2 3 4
Mean % Correct Score 49.4 | 50.5 | 58.6 | 68.6
Percentage of subjects exceeding chance performanee<d.05 0.0 28 | 36.1| 75
Percentage of subjects exceeding chance performaneeca.0l 0.0 0.0 | 194 | 61.1
TABLE Il

PERFORMANCE MEASURES OBTAINED FROM THE PERCEPTUAL EXPERINME. THE MEAN PERCENT CORRECT DISCRIMINATION SCORES ARE AVERAGED
OVER THE THREE SIGNAL DURATIONS

E. Masking Pattern Simulation masker frequency and a comparable masker level. Data from

In this section we use a simple simulation approach {§€ study of [60] are shown for a masker level of 65 dB
examine the appropriateness of the masking model to mingEL and from the study of [61] for a masker level of 60
the basic simultaneous masking effect as revealed by §#8 SPL. Note that [60] used ,althree—mtt_arval forced-choice
simultaneous masking pattern. The simultaneous masking pgSk whereas [61] used a Bekesy tracking procedure. The
tern provides a measure of the spread of masking cau§8§un~°f of those two studies coincide well for the lower edge
by a narrow-band masker and is obtained by measurthj:'Ud'ng _the peak of the patter_n. However, the upper edge of
masked thresholds of narrow-band targets placed at differd1€ masking pattern from [61] is much flatter. The simulated
frequencies around the masker. Both sinusoids and narrd@Sking pattern was shifted in level to coincide with the two
band-noises have been used as maskers and targets inPfyghoacoustically measured masking patterns at the lower
psychoacoustic literature and it has been shown that tfdg€, thus where the data from those two studies themselves
shape of the masking pattern depends on the specific stimf@iicide. There is good agreement of the simulated masking
combination (e.g., [60]). For our simulation approach,rbotpatte_ms Wl_th the data from [60]. At very_low levels, however
the masker and the targets were sinusoids. We did not e S|mul_at|on does not show the flattening of the patterh tha
noise bands since the model is not designed to take itBPe&rs in the data from [60]. For example, at target frequen
account effects of temporal fluctuations. 300-ms masker afi§S ©f 500 and 1500 Hz the simulated masked thresholds fall
target stimuli were fed into the algorithm and the resyritress below zero sensation level (not shovyn) Whereas_ the data from
signal was inspected with a discrete Fourier transform. THI still yield 3 and 12 dB of masking, respectively. Never-
masker frequency was 1000 Hz and 10 target frequenciB§/€ss, the main part of the simulated masking patterreagre
surrounding the masker were chosen, ranging from 250 vt@_ll with the maslgng pattern measured psychoacoustically
4000 Hz. In order to simulate the masked threshold at a givefing @ forced-choice task.
target frequency, the target level was systematicallyedam
steps of 2 dB in a level region around the expected masked
threshold. For target levels above the irrelevance thidsho
a given decrease in target level results in the same levg T — T T T
decrease of the target in the resynthesized signal. As soong 70
the target level falls below the irrelevance threshold, &asv, 2 g
the target is not resynthesized any more. Thus, by trackiag t-5
amplitude in the FFT bins surrounding the target frequencyf 50
we can determine the level of the target where it passes the 40
irrelevance threshold, and this level represents the sitedl
masked threshold. Due to the properties of the analysis= 30
resynthesis system, there is, however, a transition regimre GE’) 20
the target level is increasingly dampened until it disappea °© 0
Therefore, the masked threshold was defined as the input
target level at which the resynthesized target level was at g
least 10 dB dampened relative to the input target level. Thi®
procedure was performed for each target frequency. Note tha
we did not simulate the condition where the target frequency
is equivalent to the masker frequency. The reason is that the

is no straight-forward way to simulate the masked threshoigh. 6. cComparison between simulated masking patterndfiiangles) and
for this condition. psychoacoustically measured masking patterns redrawm([B0] (circles) and

; ; :[61] (squares). The sensation level (SL) of the target asthold is shown as
Figure 6 compares the results of the simulated masm&fﬁmction of frequency. The data from [60] are mean valuethrefe listeners

pattern with psychoacoustically measured masking patteind include+ 1 standard deviation of the mean; the data from [61] are mean
reported in the literature, using the same stimulus type avalues of eight listeners.

Moore et al. (1998): 65 dB
Zwicker & J. (1982): 60 dB
Irrelevance Filter
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IV. DISCUSSION used in our study gives a conservative estimate of simuttase
masking effects involved in sinusoidal stimuli.

The results of the perceptual experiment showed that theaithough there exist very sophisticated models that allow
subjects could not discriminate the irrelevance filterednsb gpe to accurately predict simultaneous masking effects (e.
from the original sound for a value of the level offset Pa52], [54], [2]), no study is known to the authors that folled
rametero of —6.59 dB. The transition from chance ratinginhe approach of our study, i.e. to remove time-frequency
to significant discrimination performance falls betweewe thcomponents of a real-life signal while causing no audible
processing conditions with offset values ©6.59 and —4.59 gifference to the original signal. As has been outlined in
dB. These results suggest that the irrelevance threshold fi§e introduction section, removing time-frequency comaus
real-world signals can be obtained by convolution of thekBarfgm a signal involves special effects that are related to
transformed signal spectrum with a spreading function @ie properties of time-frequency representations and ¢o th
simultaneous masking and a downshift by ab©6tdB. properties of the masking model. These effects were handled

We observed improvements in discrimination scores fgy the introduction of a level shift of the masked threshold
increasing signal durations (ranging from 0.3 to 1.2 s) fggnction. Because of the specifity of our approach, it is not
those processing conditions (3 and 4) that were discrinknalyossible to compare our results with results from published
from the unprocessed sounds. The results indicate thagj usiffasking models or perceptual audio codecs.
signal durations larger than 0.3 s increases the probakilit ~ The masking model applied in our study was deliberately a
discriminate the processed from the unprocessed souns. Tghinp|e one, which does not consider complex and nonlinear
result is consistent with the idea that at longer signaltioma  effects such as suppression [16], [17], nonlinear addtivi
the auditory system has the advantage of observing more tigfemasking for spectrally non-overlapping maskers [44], or
instances containing potential differences to be detected the level-dependence of auditory filters [6]. Furthermahe,

There is a general limitation of the approach to shift theurrent masking model does not consider the dependence of
masked threshold in level until no difference can be heagimultaneous masking on the temporal characteristics ef th
between the original and the processed signal. It does oot al stimuli. For example, the amount of masking differs between
to evaluate the contribution of different signal composet tonal and noise maskers, depending on the fluctuation rate of
the perceptual degradation. For example, one frequenayregthe masker [62], [4], and co-modulation of masker compoment
could have contributed more to the perceptual degradatigeross frequency bands is known to cause release from mask-
than other regions. This issue should be addressed in futirig, an effect that has been termed co-modulation masking
advancements of the algorithm. One possibility would be telease [63]. Another effect not directly incorporateaittie
test the effect of the level shift of the masked thresholglirrent masking model is the across-frequency integration
function systematically in different frequency regionsiother signal detection [14], [15]. Removing more than one spéctra
possibility would be to introduce an iterative approacheven component could result in an audible change even if each of
a model of auditory processing is applied after signal réhe components separately falls below the masked threshold
synthesis and the auditory representation of that signal Tilae result that the irrelevance threshold was found at a
compared to that of the original signal. This would allowegative value of the level offset parameter might inditase
to correct wrong decisions, i.e. the removal of either toacross-frequency integration effects were involved. Hmare
many or of too few components. Such an approach wolitdcould also result from other inaccuracies of the masking
be, however, computationally expensive. In any case, th&del or from uncontrolled effects resulting from removing
current algorithm should be considered as a starting potirhe-frequency components.
that hopefully motivates further advancements of the giner Some of the complex masking effects mentioned above
approach. might have been involved in the present study. Incorporat-

We examined the appropriateness of the proposed irreleg them into the masking model might result in a higher
vance filter algorithm to mimic the basic simultaneous maskificiency in terms of the number of removable components
ing effect by simulating masking patterns and comparingitheand will be considered for future refinement of the algorithm
with data from two psychoacoustic studies from the litematuln any case, the current approach for removing perceptually
([60], [61]). But first, it is important to discuss the findingirrelevant components provided a safe criterion. By level-
that the data from these two studies agree at the lower edsfaifting the masked threshold function, the filter criterico
including the peak of the pattern, but show a much flattereslothat listeners just heard no difference to the original aign
at the upper edge in [61]. This could be due to the fact thedme of those effects may have indirectly been taken into
[61] used a Békésy tracking method whereas [60] used a thraeeount.
interval forced-choice task. The latter task allows thejectis When interpreting the results it has to be kept in mind
to “home in” on the optimal detection cue for each maskethat the stimuli used were dynamic in their spectral and
signal combination and thus may lead to lower thresholdemporal characteristics. This could have made it diffitalt
As discussed in [60], the perception of combination prosluaietect subtle sound differences at certain instances @.tim
and beats likely influenced the thresholds at the upper edgecase of steady-state stimuli such as harmonic complexes,
of the pattern. Now turning back to the main comparison, ttike irrelevance threshold might have been found at evenrlowe
simulated masking pattern was shown to agree well with thalues of the offset parameter. For such stimuli, it may be
pattern from [60] for the main part. Thus, the masking modehsier for listeners to focus their attention on specificspé
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regions. A related aspect is that the subjects had no pbigsibimasking on the degree of tonality of the masker as well as of
to improve their performance over time for the specific stimuthe target [4], [62].
since each stimulus was tested only orfcH.instead a small  In the context ofGabor filters ways to combine simul-
number of stimuli had been presented repeatedly, it migl@neous masking and temporal masking will be explored to
have been easier for the subjects to detect slight diffe®nextend the current algorithm to a trtime-frequency masking
since they would have been familiarized with the cues to ladgorithm. In [66], a basic model for a simple time-frequgnc
detected. While these issues are interesting for futudiestyit masking algorithm based on the algorithm presented hese, ha
is important to note that the stimuli and procedures useklign t been proposed. Work on an extension of the algorithm, the
study were selected to represent realistic listening titng.  evaluation of its applicability, as well as on basic psydues-
We think that due to the relatively broad range of sounds ustd experiments on time-frequency masking using Gaussian-
in the experiments the results should be generalizableh@r otshaped tones is currently underway [45].
real-life music and speech sounds.
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The main application of the described irrelevance filtes lie
in removing perceptually irrelevant components from real-
world sounds in order to obtain more sparse and simpfe Connection to the Excitation Pattern
frequency representations of perceptual relevance, ititdde The excitation pattern modef5], [6] uses the concept of
the sound synthesis and design. Furthermore, it may easetife auditory filter bank to calculate a model for the BM acti-
interpretation of time-frequency properties of signaldise vation, theexcitation patternWe will show that our spreading
perception-related tasks. function is equivalent to the excitation pattern. We derinte
EP)(w) the excitatior] pattern at frequencyof a signalf
with Fourier transformf. Let AF(n,¢) be the auditory filter
as a function of the frequengy, with center frequency, in

Several parts of the current algorithm could be improvethe power spectrum with maximui The excitation pattern
For example, the high redundancy of the Gabor transforgan be regarded as the response of the auditory filter bank
could be reduced by using the canonical dual Gabor windawing power spectra, i.e
for resynthesis instead of relying on snugness. With therthe . .
of Gabor multipliers, i.e. Gabor filters, the window and the EFy)(§) = <f2(~),AF(§, ~)> = /AF(g,y)fQ(z/)dy. (10)
parameters could be chosen such that the smoothing and un- R

derspread property of the filter are kept for lower redundzmnc For further motivation consider a signal, which consista of

Furthermore sparsity is currently a prominent topic in aign_. : . YN
processing, e.g. under the designation “compressed @Ensixsﬂlggrl]e complex sinusoid at frequenay (i.e. f(w) = du, (w)).

[64], [65], and we will look at a way to combine our approach
with that one.

There is large room for refinements of the simultaneo@ompare this to the description in [5] p. 752.
masking model currently implemented in the algorithm. A In Equation 10 we can choose another frequency scale, in
more accurate model of peripheral auditory processing mayr case the Bark scale (Equation 2). We want to represent
increase the efficiency of the algorithm in terms of the antoutne formula in the Bark scale, using the notatipf (w) =
of removable components. Possible improvements based fo(b~! (w)). Then let
known and well-studied properties of auditory processing ®) .
include the inclusion of outer/middle ear transfer funetio EF ) (w) = EPp) (b7 (w)) =
[6], the inclusion of the absolute hearing threshold, thelle . -
dependence of auditory filters [6], the nonlinear addifiit = gAF(b (W), ) f*(w)dv.
masking depending on the spectral relations of the masker o o ) )
components [44], spectral integration effects in signdede  Substitutingy = 5='(¢) and using integration by substitu-
tion ([14], [15], [11]), or the dependency of the amount ofON We get

APPENDIX

V. PERSPECTIVES

EP(é;O)(w) = AF(w,1p). (11)

(12)

b — — P — d b_l(C)
Sdisregarding the optional stimulus repetition, that pded no response EP((fg(W) = /AF(b I(W)a b 1(C))f2(b I(O)Tdc
feedback. R
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where we denote the first derivative of a functigit)
1) = ).

The derivative of the functioh™!, i.e. the transformation

by

from the Bark to the Hz scale, can be approximated well by the AF (071 (w), b7 1(€))dy-1(¢) (b™1(¢)) - OB (b7 (¢)) d¢

critical bandwidth’ This is motivated in the following way:
Let CB(w) denote thecritical bandwidthat (linear) frequency

w, defined as the distance of the two linear frequencies

corresponding td (w) — 1 andb (w) + 4:
1

) o

Using the mean value theorem this is equivalent to

- )

fora ¢y € (b(w) — 3.b(w) + 1). Applying Taylor's theorem
to expandh—! aroundh(w) leads to the following approxima-
tion

CB(w)=0b"" (b (w) + 5

cB) = (7 @) (5 +3

1

CB(w)

~J

™) (b(w)).

Therefore

EP® (w)

(£

/ AR (), b7 () F2(71(0)-CB (57 (0)) dc.

R

(13)

For CB(b~'(¢)) a good approximation by an analytical [1]

formula is known, see Equation 9.

In the Bark scale all auditory filters can be approximated]

by triangular functions having equal slopes at differemttee

frequencies. This means they are just shifted versions of [g

shape function, denoted hylF(w). Using the above men-
tioned translation operatdr, this can be expressed as

AF(b™(n),07(¢)) = TR AF(b™1(Q))-
Therefore the original formula can be simplified to:

Bq13 = [ [TLAF (b71(0)] f2(071(C) - CB(b™(C)) d¢ =

R

= JAF (7 €= )] (P67 OBO (@) de

Denote the involution by AF(w)
convolution in the Bark scale by

AF(—w) and the

(f ¥ g) (w) = 7 fO N w-0) g (v))av

Then?8

EpW®

G = a7 Y (72-c8)| ).

For the transformation back to the Hz scale we set

EP(5)(8) = c%@ {Zf V(e CB)] (b(9)).

“For the very similar ERB scale [5] it can be easily shown thit telation
is exactly true for the analytical approximation of the ERBIle and the ERB
bandwidth [67].

8Notice thatb—! is symmetric.
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The weighting byﬁ(g) is chosen to keep Eqg. 11 valid,
because

= AF(b""(w),b""(¢)) - CB (b (¢o)) -

In conclusion, the calculation of the excitation patterings
the auditory filter model is equivalent to a convolution miode
in the Bark scale, using the critical bandwidth function as a
weighting factor twice, the original' B in the forward and its
inverse in the backward frequency scale transformation.

B. Download
The masking algorithm is implemented 87X [21],

a signal processing software system designed at the
Acoustics Research Institute of the Austrian Academy
of Sciences. The software can be downloaded at

http://ww. kfs. oeaw. ac. at and a free trial license
can be obtained (for 3 months) by e-mail as explained on this
webpage.
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