Skip to content

News Arts and Science Teaching Media Library Services IEM - intern Contact
  You are not logged in Link icon Log in
You are here: Home » Kunst & Forschung » Signalverarbeitung » Digitale adaptive Methoden für Kopfhörer mit aktiver Geräuschunterdrückung

Navigation
             Signal Extrapolati
             Signalkorrelation
             Simulation des per
             Smart Sound Genera
             Sounding objects:
             Soundmodul Flugsim
             Spatial Auditory U
             Speech Enhancement
             Sprachverständlich
             Stimmentransformat
             thermenface
             Time-scale-modific
             Tonhöhenwahrnehmun
             Unterdrückung hörb
             Untersuchung proso
             Untersuchungen von
             Varietäten des Öst
             Verbesserung der v
             Vergleich untersch
             Vocal melody trans
             Voice Transformati
             Wave-TabShaper
             Wavelet Applicatio
             Zeitdatenbehandlun
             Zerlegung und Erze
             Österreichisches A

Digitale adaptive Methoden für Kopfhörer mit aktiver Geräuschunterdrückung

Markus Guldenschuh

Ziel dieser Dissertation ist es, die aktive Geräuschunterdrückung für Kopfhörer mit digitalen Methoden zu verbessern. Als erstes kann die analoge Geräuschunterdrückungsstrecke digital analysiert werden. Je nach Analyseergebnis wird das Anti-Geräuschsignal entweder verstärkt, um eine bessere Geräuschunterdrückung zu erhalten, oder abgeschwächt, falls die Analyse ein Überschwingen und somit eine Destabilisierung des Systems prädiziert. Zweitens kann das Anti-Geräuschsignal direkt digital bearbeitet werden bevor es wieder analog gewandelt und vom Lautsprecher ausgespielt wird. Dies ermöglicht den Einsatz von adaptiven Algorithmen, die die Geräuschunterdrückung an die jeweilige individuelle Tragesituation anpassen. Allerdings kosten die Digitalisierung, inklusive den Bearbeitungen, und die anschließenden Analogwandlung Zeit. Dieser Zeitverlust bedeutet auch einen Verlust an Information über die momentane Beschaffenheit des Störsignals, was die Geräuschunterdrückung natürlich verschlechtert. Es müssen deshalb Algorithmen gefunden werden, die die Entwicklung des Störgeräusches prädizieren, damit diesem Verlust an Zeit entgegengewirkt werden kann.


Last modified 04.05.2011